Volume 42 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Li Cong, Xian Benzhong, Wang Pengyu, Chen Lei, Tian Rongheng, Yang Rongchao, Chen Sirui. Development law of gravity flow sandstone reservoir in the second Member of the Dongying Formation in the northeastern Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 159-169. doi: 10.19509/j.cnki.dzkq.tb20220260
Citation: Li Cong, Xian Benzhong, Wang Pengyu, Chen Lei, Tian Rongheng, Yang Rongchao, Chen Sirui. Development law of gravity flow sandstone reservoir in the second Member of the Dongying Formation in the northeastern Nanpu Depression[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 159-169. doi: 10.19509/j.cnki.dzkq.tb20220260

Development law of gravity flow sandstone reservoir in the second Member of the Dongying Formation in the northeastern Nanpu Depression

doi: 10.19509/j.cnki.dzkq.tb20220260
  • Received Date: 06 Jun 2022
  • With the improvement of hydrocarbon exploration, turbidite reservoirs formed by deep-water gravity flow have become an important target for oil and gas exploration and development in faulted basins in eastern China. Due to the weak depositional differentiation and diagenesis damage, the overall quality of gravity flow sandstone reservoirs is poor. The prediction of high-quality reservoirs is becoming the key to restricting effective hydrocarbon exploration. In this paper, the authors study the distribution, lithofacies, and reservoir characteristics of gravity flow sandstone in the northeastern Nanpu Depression by cores, well-logging data, reservoir physical properties, and rock slices to explore the key control factor and development law of high-quality reservoirs. The result shows that the gravity flow sediments are mainly composed of eight lithofacies interpreted as slide-slump, sandy debris flow, muddy debris flow, and turbidity current. According to the statistical analyses of reservoir physical property parameters, it is proven that the gravity flow sandstone reservoir is with strong heterogeneity and that its quality depends on sandstone genesis, sand-mud structure, and dissolution intensity. The high-quality reservoirs are mainly from sandy debris flows and turbidity currents. Massive sandstones from sandy debris flows are usually high-quality reservoirs characterized by large single-bed thickness, strong calcareous dissolution of calcareous cement, and few muddy interbeds.In contrast, the sandstones from turbidity currents are of low quality due to small thickness, weak dissolution of calcareous cement, and many interbedded mudstones, and are formed in a closed diagenetic environment. This study provides an effective predictive idea for hydrocarbon exploration on deep-water gravity flow sandstone reservoir in a lacustrine basin based on analyses of sandstone genesis and sand-mud structure.

     

  • loading
  • [1]
    鲜本忠, 安思奇, 施文华. 水下碎屑流沉积: 深水沉积研究热点与进展[J]. 地质论评, 2014, 60(1): 39-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401005.htm

    Xian B Z, An S Q, Shi W H. Subaqueous debris flow: Hotspots and advances of deep-water sedimention[J]. Geological Review, 2014, 60(1): 39-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401005.htm
    [2]
    杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1): 88-111. doi: 10.14027/j.issn.1000-0550.2020.037

    Yang T, Cao Y C, Tian J C. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111(in Chinese with English abstract). doi: 10.14027/j.issn.1000-0550.2020.037
    [3]
    Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10. doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D
    [4]
    Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin, 2001, 113(11): 1377-1386. doi: 10.1130/0016-7606(2001)113<1377:EOSSGF>2.0.CO;2
    [5]
    Mohrig D, Whipple K X, Hondzo M, et al. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 1998(110): 387-394.
    [6]
    杨田, 操应长, 王艳忠, 等. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例[J]. 石油学报, 2015, 36(9): 1048-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509003.htm

    Yang T, Cao Y C, Wang Y Z, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submember in Member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36(9): 1048-1059(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509003.htm
    [7]
    杨田, 操应长, 田景春, 等. 陆相湖盆深水重力流混合事件层沉积及沉积学意义[J]. 地质学报, 2021, 95(12): 3842-3857. doi: 10.3969/j.issn.0001-5717.2021.12.019

    Yang T, Cao Y C, Tian J C, et al. Deposition of deep-water gravity-flow hybird event beds in lacustrine basins and their sedimentological significance[J]. Acta Geologica Sinica, 2021, 95(12): 3842-3857(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.12.019
    [8]
    陈宇航, 朱增伍, 贾鹏, 等. 重力流沉积砂岩的成因、改造及油气勘探意义[J]. 地质科技情报, 2017, 36(5): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705020.htm

    Chen Y H, Zhu Z W, Jia P, et al. Genetic mechanism and rework of deep-water sedimentary sand and its significance for petroleum exploration[J]. Geological Science and Technology Information, 2017, 36(5): 148-155(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705020.htm
    [9]
    孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015, 34(3): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503005.htm

    Sun G T. A review of deep-water gravity-flow deposition research[J]. Geological Science and Technology Information, 2015, 34(3): 30-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503005.htm
    [10]
    李相博, 刘化清, 潘树新, 等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报, 2019, 37(5): 904-921. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905003.htm

    Li X B, Liu H Q, Pan S X, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905003.htm
    [11]
    刘策, 于炳松, 蒋锐, 等. 湖盆重力流沉积特征及模式[J]. 地质科技情报, 2017, 36(5): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705018.htm

    Liu C, Yu B S, Jiang R, et al. Sedimentary feature and mode of gravity flow in lacustrine basin: Example from Ordos Basin and Luanping Basin[J]. Geological Science and Technology Information, 2017, 36(5): 133-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201705018.htm
    [12]
    鲜本忠, 王璐, 刘建平, 等. 东营凹陷东部始新世三角洲供给型重力流-沉积特征与模式[J]. 中国石油大学学报: 自然科学版, 2016, 40(5): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201605003.htm

    Xian B Z, Wang L, Liu J P, et al. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression[J]. Journal of China University of Petroleum: Edition of Natural Science, 2016, 40(5): 10-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201605003.htm
    [13]
    符勇, 李忠诚, 万谱, 等. 三角洲前缘滑塌型重力流沉积特征及控制因素: 以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101018.htm

    Fu Y, Li Z C, Wan P, et al. Sedimentary characteristics and controlling factors of slump gravity flow in delta front: A case study of Qing 1 Member in Da'an area, Songliao Basin[J]. Lithologic Reservoirs, 2021, 33(1): 198-208(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101018.htm
    [14]
    王华, 陈思, 巩天浩, 等. 牵引流化重力流沉积过程与堆积机制[J]. 地质科技通报, 2020, 39(1): 95-104. doi: 10.19509/j.cnki.dzkq.2020.0111

    Wang H, Chen S, Gong T H, et al. Sedimentary process and accumulation mechanism of traction fluidization gravity flow: An example from Qikou Sag, Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 95-104(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0111
    [15]
    鲜本忠, 万锦峰, 姜在兴, 等. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例[J]. 地学前缘, 2012, 19(1): 121-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201015.htm

    Xian B Z, Wan J F, Jiang Z X, et al. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: A case study from Dongying Formation in Nanpu Depression[J]. Earth Science Frontiers, 2012, 19(1): 121-135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201015.htm
    [16]
    Chen P, Xian B, Li M, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China: Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68(7): 3279-3306.
    [17]
    Zhang J, Wu S, Hu G, et al. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin[J]. Marine and Petroleum Geology, 2018, 94: 179-197.
    [18]
    Pu X, Zhao X, Wang J, et al. Reservoirs properties of slump-type sub-lacustrine fans and their main control factors in first Member of Paleogene Shahejie Formation in Binhai area, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(5): 977-989.
    [19]
    Yang T, Cao Y, Friis H, et al. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third Member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China[J]. Marine and Petroleum Geology, 2018, 92: 547-564.
    [20]
    Chen D, Pang X, Jiang Z, et al. Reservoir characteristics and their effects on hydrocarbon accumulation in lacustrine turbidites in the Jiyang Super-depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2009, 26(2): 149-162.
    [21]
    Zhao X, Pu X, Zhou L, et al. Geologic characteristics of deep water deposits and exploration discoveries in slope zones of fault lake basin: A case study of Paleogene Shahejie Formation in Banqiao-Qibei slope, Qikou Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2017, 44(2): 171-182.
    [22]
    Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
    [23]
    Haughton P, Davis C, Mccaffrey W, et al. Hybrid sediment gravity flow deposits: Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
    [24]
    操应长, 燕苗苗, 葸克来, 等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报. 2019, 37(5): 945-956. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905006.htm

    Cao Y C, Yan M M, XI K L, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905006.htm
    [25]
    管红, 朱筱敏. 南堡凹陷滩海地区古近系砂岩孔隙类型、分布及其控制因素[J]. 中国石油大学学报: 自然科学版, 2009, 33(4): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200904004.htm

    Guan H, Zhu X M. Types, distribution of sandstone pore of Paleaogene and its controlling factors in beach area, Nanpu Sag[J]. Journal of China University of Petroleum: Edition of Natural Science, 2009, 33(4): 22-26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200904004.htm
    [26]
    吴浩, 纪友亮, 周勇, 等. 南堡凹陷南部古近系深层优质储层成因[J]. 中国矿业大学学报, 2019, 48(3): 553-569. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903010.htm

    Wu H, Ji Y L, Zhou Y, et al. Origin of the Paleogene deep burial high-quality reservoirs in the southern Nanpu Sag[J]. Journal of China University of Mining & Technology, 2019, 48(3): 553-569(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201903010.htm
    [27]
    张艺楼, 吴浩, 纪友亮, 等. 南堡凹陷南部不同构造带东二段储层孔隙结构差异及其对储层质量的影响[J]. 岩石矿物学杂志, 2020, 39(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202001007.htm

    Zhang Y L, Wu H, Ji Y L, et al. Characteristics of pore structure differences in the 2th Member reservoir of Oligocene Dongying Formation, southern Nanpu Sag: Implications for reservoir quality[J]. Acta Petrologica et Mineralogica, 2020, 39(1): 85-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202001007.htm
    [28]
    王恩泽, 刘国勇, 庞雄奇, 等. 南堡凹陷中深层碎屑岩储集层成岩演化特征及成因机制[J]. 石油勘探与开发, 2020, 47(2): 321-333. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002012.htm

    Wang E Z, Liu G Y, Pang X Q, et al. Diagenetic evolution and formation mechanisms of middle to deep clastic reservoirs in the Nanpu Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(2): 321-333(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002012.htm
    [29]
    徐波, 廖保方, 张帆, 等. 南堡油田储层构型分级方案建议[J]. 地质科技情报, 2015, 34(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502024.htm

    Xu B, Liao B F, Zhang F, et al. Proposal for hierarchical scheme of architectural units to Nanpu Oilfield[J]. Geological Science and Technology Information, 2015, 34(2): 165-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502024.htm
    [30]
    李潇鹏. 南堡凹陷沙一段-东营组强烈断拗背景下扇体的精细刻画及差异性研究[D]. 武汉: 中国地质大学(武汉), 2020.

    Li X P. Characterization of fans and analysis of their variations on the background of strong rifting and depression, 1st Member of Shahejie Formation to Dongying Formation, Nanpu Sag[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
    [31]
    Zhang J, Gao J, Wu J, et al. Sedimentary characteristics and seismic geomorphology of the upper third Member of Eocene Dongying Formation in double slope systems of Laoyemiao transverse anticline, Nanpu Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 36-55.
    [32]
    Jia H, Liu T, Ji H, et al. Fan-delta facies architecture, morphological evolution and sediment delivery in the Oligocene Dongying Formation of the Nanpu Sag, Bohai Bay Basin, China[J]. Australian Journal of Earth Sciences, 2021, 68(8): 1201-1214.
    [33]
    童亨茂, 范彩伟, 孟令箭, 等. 中国东-南部裂陷盆地断裂系统复杂性的表现形式及成因机制: 以南堡凹陷和涠西南凹陷为例[J]. 地质学报, 2018, 92(9): 1753-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201809001.htm

    Tong H M, Fan C W, Meng L J, et al. Manifestation and origin mechanism of the fault system complexity in rift basins in eastern-southern China: Case study of the Nanpu and Weixinan sags[J]. Acta Geologica Sinica, 2018, 92(9): 1753-1765(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201809001.htm
    [34]
    童亨茂, 龚发雄, 孟令箭, 等. 渤海湾盆地南堡凹陷边界断层的"跃迁"特征及其成因机制[J]. 大地构造与成矿学, 2018, 42(3): 421-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803001.htm

    Tong H M, Gong F X, Meng L J, et al. Tectonic model of boundary fault migration and its genetic mechanism in the Nanpu Sag, Bohai Bay Basin[J]. Geotectonica et Metallogenia, 2018, 42(3): 421-430(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201803001.htm
    [35]
    朱光有, 张水昌, 王拥军, 等. 渤海湾盆地南堡大油田的形成条件与富集机制[J]. 地质学报, 2011, 85(1): 97-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101007.htm

    Zhu G Y, Zhang S C, Wang Y J, et al. Forming condition and enrichment mechanism of the Nanpu Oilfield in the Bohai Bay Basin, China[J]. Acta Geologica Sinica, 2011, 85(1): 97-113(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101007.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(218) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return