Volume 42 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Song Meiyu, Shi Xiaoqing, Kang Xueyuan, Wu Jichun. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262
Citation: Song Meiyu, Shi Xiaoqing, Kang Xueyuan, Wu Jichun. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262

Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites

doi: 10.19509/j.cnki.dzkq.tb20220262
  • Received Date: 07 Jun 2022
  • Dense nonaqueous phase liquid (DNAPL) contamination is a growing problem. To assess the environmental risk of DNAPL-contaminated sites, the mass flux of the dissolved phase (mass flux) in the source zone of DNAPL contamination is often extrapolated using upscaling models. Due to the large number of parameters in the upscaling model and the high cost of investigation, the key parameters in the model need to be screened to guide the design of a reasonable observation data collection scheme for actual contaminated sites. In this paper, a global sensitivity analysis was first conducted on six parameters (mean groundwater velocity q, standardized concentration C0/Ceq, the mass ratio of ganglia GF0, the fraction of the mass flux attributable to the ganglia dissolution fg, and fitting parameters β1 and β2) in the upscaling model to identify the key parameters, and then a local sensitivity analysis was used to quantify the impact of changes in the key parameters on mass flux prediction. The results showed that the parameters q, C0/Ceq, GF0 and fg had a large impact on the mass flux prediction. The sensitivities of q and C0/Ceq were relatively high throughout the depletion process, while those of GF0 and fg increased continuously with the depletion process, reaching peaks in the middle and late stages of depletion, respectively. For source zones with different structures, the increase in mass flux was essentially constant when q or C0/Ceq increased. As the ganglia-to-pool (GTP) mass ratio increased in source zones, its effect on the mass flux prediction continued to increase or decrease when GF0 or fg increased. Therefore, the investigation needs to focus on q and C0/Ceq when predicting the mass flux, on GF0 when reasonably designing the remediation plan of the source zone, and on fg when predicting the lifetime of the source zone. For all structural source zones, q and C0/Ceq are the most important to investigate, and the investigation cost should be focused on GF0 for source zones with large GTP and fg for source zones with small GTP.

     

  • loading
  • [1]
    邓亚平, 郑菲, 施小清, 等. 多孔介质中DNAPLs运移行为研究进展[J]. 南京大学学报: 自然科学版, 2016, 52(3): 409-420. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603001.htm

    Deng Y P, Zheng F, Shi X Q, et al. Review on the transport of dense non-aqueous phase liquids in porous media[J]. Journal of Nanjing University : Natural Science Edition, 2016, 52(3): 409-420(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603001.htm
    [2]
    郑菲, 高燕维, 孙媛媛, 等. 污染源区结构特征对Tween 80去除DNAPL效果的影响[J]. 中国环境科学, 2016, 36(7): 2035-2042. doi: 10.3969/j.issn.1000-6923.2016.07.019

    Zheng F, Gao Y W, Sun Y Y, et al. The influence of source-zone architecture on DNAPL removal by Tween 80 flushing[J]. China Environmental Science, 2016, 36(7): 2035-2042(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2016.07.019
    [3]
    郭琼泽, 张烨, 姜蓓蕾, 等. 表面活性剂增强修复地下水中PCE的砂箱实验及模拟[J]. 中国环境科学, 2018, 38(9): 3398-3405. doi: 10.3969/j.issn.1000-6923.2018.09.025

    Guo Q Z, Zhang Y, Jiang B L, et al. Experiment and numerical simulation of surfactant-enhanced aquifer remediation in PCE contaminated laboratory sandbox[J]. China Environmental Science, 2018, 38(9): 3398-3405(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2018.09.025
    [4]
    Stewart L D, Chambon J C, Widdowson M A, et al. Upscaled modeling of complex DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2022, 244: 103920. doi: 10.1016/j.jconhyd.2021.103920
    [5]
    Koch J, Nowak W. Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation[J]. Water Resources Research, 2015, 51(2): 806-831. doi: 10.1002/2014WR015478
    [6]
    Zhang S, Mao G, Crittenden J, et al. Groundwater remediation from the past to the future: A bibliometric analysis[J]. WaterResearch, 2017, 119: 114-125.
    [7]
    Zhu J, Sykes J F. Simple screening models of NAPL dissolution in the subsurface[J]. Journal of Contaminant Hydrology, 2004, 72(1/4): 245-258.
    [8]
    Parker J C, Park E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers[J]. Water Resources Research, 2004, 40(5): 147-158.
    [9]
    Falta R W, Rao P S, Basu N. Assessing the impacts of partial mass depletion in DNAPL source zones: I. Analytical modeling of source strength functions and plume response[J]. Journal of Contaminant Hydrology, 2005, 78(4): 259-280. doi: 10.1016/j.jconhyd.2005.05.010
    [10]
    Zhang Z, Brusseau M L. Nonideal transport of reactive solutes in heterogeneous porous media: 5. Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation[J]. Water Resources Research, 1999, 35(10): 2921-2935. doi: 10.1029/1999WR900162
    [11]
    Karaoglu A G, Copty N K, Akyol N H, et al. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2019, 225: 103515. doi: 10.1016/j.jconhyd.2019.103515
    [12]
    Kueper B H, Frind E O. Two-phase flow in heterogeneous porous media: 1. Model development[J]. Water Resources Research, 1991, 27(6): 1049-1057. doi: 10.1029/91WR00266
    [13]
    郭芷琳, 马瑞, 张勇, 等. 地下水污染物在高度非均质介质中的迁移过程: 机理与数值模拟综述[J]. 中国科学: 地球科学, 2021, 51(11): 1817-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202111001.htm

    Guo Z L, Ma R, Zhang Y, et al. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion[J]. Science China: Earth Sciences, 2021, 51(11): 1817-1836(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202111001.htm
    [14]
    薛佩佩, 文章, 梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报, 2022, 41(1): 209-222. doi: 10.19509/j.cnki.dzkq.2022.0015

    Xue P P, Wen Z, Liang X. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 209-222(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0015
    [15]
    Christ J A, Ramsburg C A, Pennell K D, et al. Predicting DNAPL mass discharge from pool-dominated source zones[J]. Journal of contaminant hydrology, 2010, 114(1/4): 18-34.
    [16]
    Kokkinaki A, Werth C J, Sleep B E. Comparison of upscaled models for multistage mass discharge from DNAPL source zones[J]. Water Resources Research, 2014, 50(4): 3187-3205. doi: 10.1002/2013WR014663
    [17]
    Guo Z, Russo A E, DiFilippo E L, et al. Mathematical modeling of organic liquid dissolution in heterogeneous source zones[J]. Journal of Contaminant Hydrology, 2020, 235: 103716. doi: 10.1016/j.jconhyd.2020.103716
    [18]
    宋美钰, 施小清, 马春龙, 等. 复杂DNAPL污染源区溶解相污染通量的升尺度计算[J]. 中国环境科学, 2022, 42(5): 2095-2104. doi: 10.3969/j.issn.1000-6923.2022.05.013

    Song M Y, Shi X Q, Ma C L, et al. Upscaling dissolved phase mass flux for complex DNAPL source zones[J]. China Environmental Science, 2022, 42(5): 2095-2104(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2022.05.013
    [19]
    Li K B, Abriola L M. A multistage multicriteria spatial sampling strategy for estimating contaminant mass discharge and its uncertainty[J]. Water Resources Research, 2009, 45: W06407.
    [20]
    Kang X, Shi X, Deng Y, et al. Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability fieldin a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble Kalman filtering[J]. Journal of Hydrology, 2018, 567: 149-164. doi: 10.1016/j.jhydrol.2018.10.019
    [21]
    Kang X, Kokkinaki A, Kitanidis P K, et al. Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic-head, self-potential and partitioning tracer data[J]. Water Resources Research, 2020, 56(8): e2020WR027627.
    [22]
    束龙仓, 王茂枚, 刘瑞国, 等. 地下水数值模拟中的参数灵敏度分析[J]. 河海大学学报: 自然科学版, 2007, 35(5): 491-494. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200705002.htm

    Shu L C, Wang M M, Liu R G, et al. Sensitivity analysis of parameters in numerical simulation of groundwater[J]. Journal of Hohai University: Natural Science Edition, 2007, 35(5): 491-494(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200705002.htm
    [23]
    郑菲, 施小清, 吴吉春, 等. 苏北盆地盐城组咸水层CO2地质封存泄漏风险的全局敏感性分析[J]. 高校地质学报, 2012, 18(2): 232-238. doi: 10.3969/j.issn.1006-7493.2012.02.005

    Zheng F, Shi X Q, Wu J C, et al. Global sensitivity analysis of leakage risk for CO2 geological sequestration in the saline aquifer of Yancheng Formation in Subei Basin[J]. Geological Journal of China Universities, 2012, 18(2): 232-238(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.02.005
    [24]
    Welter D E, White J T, Hunt R J, et al. Approaches in highly parameterized inversion: PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models[R]. : US Geological Survey, 2015.
    [25]
    Bea S A, Wainwright H, Spycher N, et al. Identifying key controls on the behavior of an acidic-U (Ⅵ) plume in the Savannah River Site using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 34-54. doi: 10.1016/j.jconhyd.2013.04.005
    [26]
    Wainwright H M, Finsterlr S. Global sensitivity and data-worth analyses in iTOUGH2: User's guide[R]. : Office of Scientific and Technical Information (OSTI), 2016.
    [27]
    杜建雯, 施小清, 徐红霞, 等. 基于iTOUGH2的生物降解模型全局敏感性时变分析[J]. 水文地质工程地质, 2020, 47(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002006.htm

    Du J W, Shi X Q, Xu H X, et al. Temporal variation of global sensitivity analysis for biodegradation model using iTOUGH2[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 35-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002006.htm
    [28]
    Saltelli A, Ratto M, Tarantola S, et al. Sensitivity analysis for chemical models[J]. Chemical Reviews, 2005, 105(7): 2811-2828. doi: 10.1021/cr040659d
    [29]
    Valsala R, Govindarajan S K. Co-colloidal BTEX and microbial transport in a saturated porous system: Numerical modeling and sensitivity analysis[J]. Transport in Porous Media, 2019, 127(2): 269-294. doi: 10.1007/s11242-018-1191-2
    [30]
    孙飞飞, 许钦, 任立良, 等. 水文模型参数敏感性分析概述[J]. 中国农村水利水电, 2014(3): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201403027.htm

    Sun F F, Xu Q, Ren L L, et al. An analysis of the parameters sensitivity of hydrological model[J]. China Academic Journal Electronic Publishing House, 2014(3): 92-95(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201403027.htm
    [31]
    王上上, 陈富, 李东贤, 等. 锚杆不确定性对加固边坡失稳概率的影响[J]. 地质科技通报, 2022, 41(2): 282-289. doi: 10.19509/j.cnki.dzkq.2022.0055

    Wang S S, Chen F, Li D X, et al. Influence of anchor uncertainty on the failure probability of reinforced slope[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 282-289(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0055
    [32]
    Hill M C, Tiedeman C R. Effective groundwater model calibration: With analysis of data, sensitivities, predictions, and uncertainty[M]. New York: John Wiley & Sons, 2006.
    [33]
    McKay M D. Evaluating prediction uncertainty[R]. : Nuclear Regulatory Commission, 1995.
    [34]
    Rajabi M M, Ataie-Ashtiani B, Janssen H. Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling[J]. Advances in Water Resources, 2015, 76: 127-139. doi: 10.1016/j.advwatres.2014.12.008
    [35]
    地下水质量标准: GB14848-2017[S]. 北京: 中国标准出版社, 2017.

    Quality standard in groundwater: GB14848-2017[S]. Beijing: Standards Press of China, 2017.
    [36]
    于青春, 万力, 靳孟贵, 等. 水文地质学基础[M]. 北京: 地质出版社, 2011.

    Yu Q C, Wan L, Jin M G, et al. Foundation of hydrogeology[M]. Beijing: Geological Publishing House, 2011(in Chinese).
    [37]
    Park E, Parker J C. Evaluation of an upscaled model for DNAPL dissolution kinetics in heterogeneous aquifers[J]. Advances in Water Resources, 2005, 28(12): 1280-1291.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(540) PDF Downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return