Volume 42 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Luo Pan, Gao Yuanyuan, Wang Houjin, Ren Jianye. Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 234-246. doi: 10.19509/j.cnki.dzkq.tb20220322
Citation: Luo Pan, Gao Yuanyuan, Wang Houjin, Ren Jianye. Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 234-246. doi: 10.19509/j.cnki.dzkq.tb20220322

Characteristics and process of the final breakup of the crustal lithosphere at the V-shaped tip of the Southwest Subbasin in South China Sea

doi: 10.19509/j.cnki.dzkq.tb20220322
  • Received Date: 04 Jul 2022
  • To clarify the final breakup characteristics of the crustal lithosphere at the tip of the Southwest Subbasin in South China Sea and its evolution stages, this paper interpreted 2D deep seismic lines and analyzed the fault activities, the proto-basin type in different stages, the rates of subsidence and the history of tectonic and subsidence evolutions. It was clear that the distal domain and ocean continental transition consist of the final breakup zone of continental lithosphere at the tip of southwest South China Sea. According to the shape of the crust, this final breakup zone could be subdivided into a box domain, wedge domain and proto-oceanic domain. The basins within the wedge-shaped domain had been divided into the rifting basin (Tg-Sd), the detachment basin (Sd-Pd), and the sag basin (Pd-Bi). The basins within the box-shaped domain were of the rifting type from the Paleocene to Oligocene (Tg-Sd) and then transitioned to the passive sedimentation stage. From the Cenozoic, the sedimentation center on the tip of the Southwest Subbasin migrated from continental to ocean during the tectonic evolution of this region. The magmatism developed strongly and finally broke up the continental crust. The comparison of high-resolution seismic data showed that the tectono-sediments and magma type were different within different domains at the V-shape tip of the Southwest Subbasin. The continental crust of the research area broke apart after the "double detachment faulting". Then, the magma came in and formed the proto-oceanic crust. The research in this paper was of great value for oil and gas exploration in the deep-water basin in the southwest South China Sea.

     

  • loading
  • [1]
    Peron-Pinvidic G, Gernigon L, Gaina C, et al. Insights from the Jan Mayen system in the Norwegian-Greenland sea-I. Mapping of a microcontinent[J]. Geophysical Journal International, 2012, 191(2): 385-412. doi: 10.1111/j.1365-246X.2012.05639.x
    [2]
    Luo P, Manatschal G, Ren J, et al. Tectono-magmatic and stratigraphic evolution of final rifting and breakup: Evidence from the tip of the southwestern propagator in the South China Sea[J]. Marine and Petroleum Geology, 2021, 129: 105079. doi: 10.1016/j.marpetgeo.2021.105079
    [3]
    Peron-Pinvidic G, Manatschal G. From microcontinents to extensional allochthons: Witnesses of how continents rift and break apart?[J]. Petroleum Geoscience, 2010, 16(3): 189-197. doi: 10.1144/1354-079309-903
    [4]
    Sawyer D S, Coffin M F, Reston T J, et al. COBBOOM: The continental breakup and birth of oceans mission[J]. Scientific Drilling, 2007, 5: 13-25. doi: 10.5194/sd-5-13-2007
    [5]
    Whitmarsh R B, Beslier M O, Wallace P J. Proceedings of the ocean drilling program, initial reports[M]. [S. l. ]: Ocean Drill. Program, College Station, Tex, 1998.
    [6]
    Whitmarsh R B, Wallace P J. The rift-to-drift development of the West Iberia non-volcanic continental margin: A review of the contribution of Ocean Drilling Program Leg 173[J]. Small Enterprise Development, 2001, 173: 1-36.
    [7]
    Peron-Pinvidic G, Manatschal G, Minshull T A, et al. Tectono-sedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history[J]. Tectonics, 2007, 26(TC20112).
    [8]
    Sibuet J, Briane E, Tucholke. The geodynamic province of transitional lithosphere adjacent to magma-poor continental margins[J]. Geological Society London Special Publications, 2013, 369(1): 429-452. doi: 10.1144/SP369.15
    [9]
    Reston T J. Polyphase faulting during the development of the west Galicia rifted margin[J]. Earth and Planetary Science Letters, 2005, 237: 561-576. doi: 10.1016/j.epsl.2005.06.019
    [10]
    Reston T J. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis[J]. Tectonophysics, 2009, 468(1/4): 6-27.
    [11]
    Lavier L L, Manatschal G. A mechanism to thin the continental lithosphere at magma-poor margins[J]. Nature, 2006, 440: 324-328. doi: 10.1038/nature04608
    [12]
    Manatschal G. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps[J]. International Journal of Earth Sciences, 2004, 93(3): 432-466.
    [13]
    Manatschal G, Lavier L, Chenin P. The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling[J]. Gondwana Research, 2015, 27(1): 140-164. doi: 10.1016/j.gr.2014.08.006
    [14]
    Manatschal G, Mutener O. A type sequence across an ancient magma-poor ocean-continent transition: The example of the western Alpine Tethys ophiolites[J]. Tectonophysics, 2009, 473(1/2): 4-19.
    [15]
    Tugend J, Gillard M, Manatschal G, et al. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes[J]. Geological Society, London, Special Publications, 2020, 476(1): 23-47. doi: 10.1144/SP476.9
    [16]
    Boillot G, Recq M, Winterer R L, et al, Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP leg 103, western Galicia margin, Spain)[J]. Tectonophysics, 1987, 132(4): 335-342. doi: 10.1016/0040-1951(87)90352-0
    [17]
    Planke S. Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, Voring volcanic margin[J]. Journal of Geophysical Research, 1994, 99(B5): 9279-9296. doi: 10.1029/94JB00496
    [18]
    Lister G, Etheridge M, Symonds P. Detachment models for the formation of passive continental margins[J]. Tectonics, 1991, 10: 1038-1064. doi: 10.1029/90TC01007
    [19]
    Zhao Y H, Ren J Y, Pang X, et al. Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun Rift, northern margin of the South China Sea[J]. Marine and Petroleum Geology, 2018, 89(3): 687-700.
    [20]
    Lei C, Alves T M, Ren J, et al. Rift structure and sediment infill of hyperextended continental crust: Insights from 3D seismic and well data (Xisha Trough, South China Sea)[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018610.
    [21]
    Lei C, Ren J Y, Pang X, et al. Continental rifting and sediment infill in the distal part of the northern South China Sea in the western Pacific region: Challenge on the present-day models for the passive margins[J]. Marine and Petroleum Geology, 2018, 93: 166-181. doi: 10.1016/j.marpetgeo.2018.02.020
    [22]
    任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水-超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm

    Ren J Y, Pang X, Yu P, et al. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea[J]. Chinese J. Geophys., 2018, 61(12): 4901-4920(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
    [23]
    任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114. doi: 10.13745/j.esf.2015.01.009

    Ren J Y, Pang X, Lei C, et al. Ocean and continental transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102-114. doi: 10.13745/j.esf.2015.01.009
    [24]
    Wang P, Huang C Y, Lin J, et al. The South China Sea is not a mini-Atlantic: Plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019, 6(5): 902-913. doi: 10.1093/nsr/nwz135
    [25]
    Sun Z, Lin J, Qiu N, et al. The role of magmatism in the thinning and breakup of the South China Sea continental margin: Special Topic: The South China Sea Ocean Drilling[J]. National Science Review, 2019, 6(5): 871-876. doi: 10.1093/nsr/nwz116
    [26]
    Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10): 782-789. doi: 10.1038/s41561-018-0198-1
    [27]
    Ding W, Sun Z, Mohn G, et al. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367 & 368 drilling results[J]. Earth and Planetary Science Letters, 2020, 531: 115932. doi: 10.1016/j.epsl.2019.115932
    [28]
    Ding W, Li J, Clift P D. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP Expedition 349[J]. Journal of Asian Earth Sciences, 2016, 115: 97-113. doi: 10.1016/j.jseaes.2015.09.013
    [29]
    Pichot T, Delescluse M, Chamot-Rooke N, et al. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data[J]. Marine and Petroleum Geology, 2014, 58(Part B): 627-643.
    [30]
    Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280
    [31]
    Song T, Li C F, Wu S, et al, Extensional styles of the conjugate rifted margins of the South China Sea[J]. Journal of Asian Earth Sciences, 2019, 177: 117-128. doi: 10.1016/j.jseaes.2019.03.008
    [32]
    Xia K, Xia S, Chen Z, et al. Geothermal characteristics of the South China Sea[C]//Gupta M L, Yamano M. Terrestrial heat flow and geothermal energy in Asia. New Delhi: IBH Publishing Co. Pvt. Ltd., 1995: 113-127.
    [33]
    龚再升, 李思田, 谢泰俊, 等. 南海北部大陆边缘盆地分析与油气聚集[M]. 北京: 科学出版社, 1997.

    Gong Z S, Li S T, Xie T J, et al. The basin analysis and oil accumulation on the north margin of South China Sea[M]. Beijing: Science Press, 1997(in Chinse).
    [34]
    Jahn B, Chen P Y, Yen T P. Rb-Sr ages of granitic rocks from southeastern China and their tectonic significance[J]. Geology Society American Bulletin, 1976, 87: 763-776. doi: 10.1130/0016-7606(1976)87<763:RAOGRI>2.0.CO;2
    [35]
    Chan L S, Shen W, Pubellier M. Polyphase rifting of greater Pearl River delta region south China: Evidence for possible rapid changes in regional stress configuration[J]. Journal of Structure Geology, 2010, 32: 746-754. doi: 10.1016/j.jsg.2010.04.015
    [36]
    Nanni U, Pubellier M, Chan L S, et al. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 136: 110-123. doi: 10.1016/j.jseaes.2017.01.008
    [37]
    Ye Q, Mei L, Shi H, et al. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic tectonic evolution of the South China Sea area[J]. Tectonophysics, 2018, 731/732: 1-16. doi: 10.1016/j.tecto.2018.03.003
    [38]
    Zhang G, Shao L, Qiao P, et al. Cretaceous-Palaeogene sedimentary evolution of the South China Sea region: A preliminary synthesis[J]. Geology Journal, 2020, 55(4): 2662-2683.
    [39]
    Xie X, Müller R D, Li S, et al. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745-765. doi: 10.1016/j.marpetgeo.2006.03.004
    [40]
    Xie X, Ren J, Pang X, et al. Stratigraphic architectures and associated unconformities of Pearl River mouth basin during rifting and lithospheric breakup of the South China Sea[J]. Marine Geophysical Research, 2019, 40: 129-144. doi: 10.1007/s11001-019-09378-6
    [41]
    Yao Y, Liu H, Yang C, et al. Characteristics and evolution of Cenozoic sediments in the Liyue Basin, SE South China Sea[J]. Journal of Asian Earth Science, 2012, 60: 114-129. doi: 10.1016/j.jseaes.2012.08.003
    [42]
    Steuer S, Franke D, Meresse F, et al. Oligocene-Miocene carbonates and their role for constraining the rifting and collision history of the Dangerous Grounds, South China Sea[J]. Marine and Petroleum Geology, 2014, 58(Part B): 644-657.
    [43]
    Ding W, Franke D, Li J, et al. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea[J]. Tectonophysics, 2013, 582: 162-176. doi: 10.1016/j.tecto.2012.09.026
    [44]
    Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58: 704-720. doi: 10.1016/j.marpetgeo.2013.11.020
    [45]
    Nirrengarten M, Mohn G, Kusznir N J, et al. Extension modes and breakup processes of the Southeast China-Northwest Palawan conjugate rifted margins[J]. Marine and Petroleum Geology, 2020, 113: 104123. doi: 10.1016/j.marpetgeo.2019.104123
    [46]
    Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. G-cubed, 2014, 15(12): 4958-4983. http://darchive.mblwhoilibrary.org/bitstream/handle/1912/7180/Li_et_al-2014-Geochemistry%2c_Geophysics%2c_Geosystems.pdf?sequence=1&isAllowed=y
    [47]
    Yang L L, Ren J Y, McIntosh K, et al. The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin[J]. Marine and Petroleum Geology, 2018, 92: 234-254. doi: 10.1016/j.marpetgeo.2018.02.032
    [48]
    Morley C K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 2016, 120: 62-86. doi: 10.1016/j.jseaes.2016.01.013
    [49]
    Pubellier M, Chang S P, Delescluse M. The South China Sea: Rifting peculiarities of a marginal basin[C]//Peron-Pinvidic G. Continental rifted margins 2: Case examples. Wiley: ISTE, Ltd., 2022: 107-131.
    [50]
    Zhao F, Alves T M, Wu S L, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)[J]. Earth and Planetery Science Letters, 2016, 445: 79-91. doi: 10.1016/j.epsl.2016.04.001
    [51]
    Alves T M, Fetter M, Busby C, et al. A tectono-stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems[J]. Marine and Petroleum Geology, 2020: 104341.
    [52]
    Deng H, Ren J, Pang X, et al. South China Sea documents the transition from wide continental rift to continental break up[J]. Nature Communications, 2020, 11(1): 4583. doi: 10.1038/s41467-020-18448-y
    [53]
    Li L, Clift P D, Stephenson R, et al. Non-uniform hyper-extension in advance of seafloor spreading on the vietnam continental margin and the SW South China Sea[J]. Basin Research, 2014, 26(1): 106-134. doi: 10.1111/bre.12045
    [54]
    Hall R. Australia-SE Asia collision: Plate tectonics and crustal flow[J]. Geological Society London Special Publications, 2011, 355(1): 75-109. doi: 10.1144/SP355.5
    [55]
    Madon M, Kim C L, Wong R. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 76: 312-333. doi: 10.1016/j.jseaes.2013.04.040
    [56]
    Lü C, Hao T, Lin J, et al. The role of rifting in the development of the continental margins of the southwest subbasin, South China Sea: Insights from an OBS experiment[J]. Marine Geophysical Research, 2016: 1-19.
    [57]
    Dong M, Wu S, Zhang J, et al. Lithospheric structure of the Southwest South China Sea: Implications for rifting and extension[J]. International Geology Review, 2018: 1-14.
    [58]
    Cameselle A L, Ranero C R, Franke D, et al. The continent-ocean transition on the northwestern South China Sea[J]. Basin Research, 2015, 29: 73-95.
    [59]
    Cameselle A L, Ranero C R, Barckhausen U. Understanding the 3D formation of a wide rift: The central South China Sea rift system[J]. Tectonics, 2020, 39: 12.
    [60]
    Chang S P, Pubellier M, Delescluse M, et al. Crustal architecture and evolution of the southwestern South China Sea: Implications to continental breakup[J]. Marine and Petroleum Geology, 2022, 136: 105450. doi: 10.1016/j.marpetgeo.2021.105450
    [61]
    Peng X, Li C F, Shen C, et al. Anomalous lower crustal structure and origin of magmatism in the southeastern margin of the South China Sea[J]. Marine and Petroleum Geology, 2020, 122: 104711. doi: 10.1016/j.marpetgeo.2020.104711
    [62]
    Fyhn M, Boldreel L O, Nielsen L H. Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism[J]. Tectonophysics, 2009, 478(3): 184-214.
    [63]
    Barckhausen U, Engels M, Franke D, et al. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 299-611.
    [64]
    裴健翔, 张成, 王亚辉, 等. 南海南部陆缘盆地裂陷-漂移-前陆期构造演化及沉积响应: 以礼乐盆地为例[J]. 地质科技通报, 2021, 40(2): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0205

    Pei J X, Zhang C, Wang Y H, et al. Tectonic evolution and depositional response in southern continental marginal basins of South China Sea during period of rift-drift-foreland: A case study from the Liyue Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 42-53(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0205
    [65]
    McKenzie D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7
    [66]
    Boillot G M, Recq M, Winterer E L, et al. Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP Leg 103, western Galicia, Spain)[J]. Tectonophysics, 1987, 132: 335-342. doi: 10.1016/0040-1951(87)90352-0
    [67]
    Mohriak W, Nemcok M, Enciso G. South Atlantic divergent margin evolution: Rift-border uplift and salt tectonics in the basins of SE Brazil[J]. Geological Society, London, (Special Publications), 2008, 294: 365-398. doi: 10.1144/SP294.19
    [68]
    Sibuet J C, Yeh Y C, Lee C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692: 98-119. doi: 10.1016/j.tecto.2016.02.022
    [69]
    Chenin P, Manatschal G, Picazo S, et al. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans[J]. Geosphere, 2017, 13(3): 1-18.
    [70]
    Savva D, Pubellier M, Franke D, et al. Different expressions of rifting on the South China Sea margins[J]. Marine and Petroleum Geology, 2014, 58: 579-598.
    [71]
    朱荣伟, 刘海龄, 姚永坚, 等. 南海西南次海盆两侧陆缘新生代构造沉降特征及演化过程[J]. 海洋地质与第四纪地质, 2020, 48(6): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006008.htm

    Zhu R W, Liu H L, Yao Y J, et al. Cenozoic tectonic subsidence of the continental margins of southwest sub-basin, South China Sea and its evolution[J]. Marine Geology & Quaternary Geology, 2020, 48(6): 82-92(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(498) PDF Downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return