Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Zhu Liping, Tao Xueqing, Wan Yukuai, He Jia, Li Mingdong. Microplastic contamination in terrestrial geoenvironments: Review and outlook[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 233-241. doi: 10.19509/j.cnki.dzkq.tb20220353
Citation: Zhu Liping, Tao Xueqing, Wan Yukuai, He Jia, Li Mingdong. Microplastic contamination in terrestrial geoenvironments: Review and outlook[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 233-241. doi: 10.19509/j.cnki.dzkq.tb20220353

Microplastic contamination in terrestrial geoenvironments: Review and outlook

doi: 10.19509/j.cnki.dzkq.tb20220353
  • Received Date: 14 Jul 2022
  • Accepted Date: 29 Aug 2022
  • Rev Recd Date: 21 Aug 2022
  • Significance

    The increasingly widespread and serious microplastic contamination in terrestrial geoenvironments(CMTG)has received much attention. However, studies on CMTG are still in the initial stage. This paper reviews the international literature on CMTG in the last five years.The sources, composition, migration and environmental impacts of CMTG are summarized, and an outlook is presented.

    Progress

    The results of the study demonstrate that the main sources of CMTG include landfills, agricultural nonpoint sources, sewage treatment systems, and transportation systems.The composition of CMTG presents significant temporal and spatial variability depending on the sources. The migration pathways of CMTG include human disturbance to soil, biological activities in soil, groundwater seepage, and wind transportation of suspended particles. The smaller the particles, the easier they migrate. CMTG has many influences on geological bodies, including increasing cohesion, decreasing porosity and pore size, decreasing air circulation, and increasing water retention capacity. Moreover, secondary pollution of geological bodies may be caused by effusion of the water-soluble additives in CMTG. Adverse effects of CMTG on plant growth, animal digestion and microbial activity have been found. For humans, energy induction, lipid metabolism disorders, oxidative stress and respiratory diseases induced by CMTG are well understood.

    Conclusions and outlooks

    In summary, CMTG is widespread and has many adverse effects on biological and human health. In the future, the effects of CMTG on nutrient transport in terrestrial ecosystems and the migration and degradation of CMTG additives in terrestrial geological bodies should be investigated, efficient and convenient quantitative detection methods for CMTG should be developed, global unified evaluation standards should be established, detection of CMTG should be listed in the detection project of contaminated soils, and efficient remediation methods for microplastic-contaminated geological bodies should be developed.

     

  • loading
  • [1]
    Vaverková M D, Paleologos E K, Dominijanni A, et al. Municipal solid waste management under COVID-19: Challenges and recommendations[J]. Environmental Geotechnics, 2021, 8(3): 217-232. doi: 10.1680/jenge.20.00082
    [2]
    Qi Y, Ossowicki A, Yang X, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711. doi: 10.1016/j.jhazmat.2019.121711
    [3]
    Su Y L, Zhang Z J, Zhu J D, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. doi: 10.1016/j.envpol.2020.116278
    [4]
    Lwanga E H, Gertsen H, Gooren H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris(Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685-2691.
    [5]
    Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190
    [6]
    梁晓霏. "净零"排放趋势下塑料循环经济前景分析[J]. 石油化工技术与经济, 2022, 38(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHA202202001.htm

    Liang X F. Analysis of recycling economy prospects of plastics under the trend of "net zero emission"[J]. Petrochemical Technology and Economy, 2022, 38(2): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHA202202001.htm
    [7]
    Su Y, Zhang Z, Wu D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164: 114968. doi: 10.1016/j.watres.2019.114968
    [8]
    Mahon A M, O'Connell B, Healy M G, et al. Microplastics in sewage sludge: Effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818.
    [9]
    O'Kelly B C, El-Zein A, Liu X, et al. Microplastics in soils: An environmental geotechnics perspective[J]. Environmental Geotechnics, 2021, 8(8): 586-618. doi: 10.1680/jenge.20.00179
    [10]
    Chandana N, Goli V S N S, Mohammad A, et al. Characterization and utilization of landfill-mined-soil-like-fractions(LFMSF) for sustainable development: A critical appraisal[J]. Waste and Biomass Valorization, 2021, 12(2): 641-662. doi: 10.1007/s12649-020-01052-y
    [11]
    Guerranti C, Martellini T, Perra G, et al. Microplastics in cosmetics: Environmental issues and needs for global bans[J]. Environmental Toxicology and Pharmacology, 2019, 68: 75-79. doi: 10.1016/j.etap.2019.03.007
    [12]
    马兆嵘, 刘有胜, 张芊芊, 等. 农用塑料薄膜使用现状与环境污染分析[J]. 生态毒理学报, 2020, 15(4): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202004003.htm

    Ma Z R, Liu Y S, Zhang Q Q, et al. The usage and environmental pollution of agricultural plastic film[J]. Asian Journal of EcoToxicology, 2020, 15(4): 21-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STDL202004003.htm
    [13]
    Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture: Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705. doi: 10.1016/j.scitotenv.2016.01.153
    [14]
    Katsumi N, Kusube T, Nagao S, et al. Accumulation of microcapsules derived from coated fertilizer in paddy fields[J]. Chemosphere, 2021, 267: 129185. doi: 10.1016/j.chemosphere.2020.129185
    [15]
    谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42. doi: 10.19509/j.cnki.dzkq.2020.0104

    Xie X J, Liu H X, Gao S, et al. Groundwater pollution sources identification and health risk assessment around typical drainage pits[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0104
    [16]
    Ruffell H, Pantos O, Northcott G, et al. Wastewater treatment plant effluents in New Zealand are a significant source of microplastics to the environment[J]. New Zealand Journal of Marine and Freshwater Research, 2023, 57(3): 336-352. doi: 10.1080/00288330.2021.1988647
    [17]
    Conley K, Clum A, Deepe J, et al. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year[J]. Water Research X, 2019, 3: 100030. doi: 10.1016/j.wroa.2019.100030
    [18]
    Rasmussen L A, Iordachescu L, Tumlin S, et al. A complete mass balance for plastics in a wastewater treatment plant - macroplastics contributes more than microplastics[J]. Water Research, 2021, 201: 117307. doi: 10.1016/j.watres.2021.117307
    [19]
    Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science and Technology, 2016, 50(20): 10777-10779. doi: 10.1021/acs.est.6b04140
    [20]
    Ng E L, Lin S Y, Dungan A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606. doi: 10.1016/j.jhazmat.2020.124606
    [21]
    Evangeliou N, Grythe H, Klimont Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communications, 2020, 11(1): 3381. doi: 10.1038/s41467-020-17201-9
    [22]
    Schwarz A E, Ligthart T N, Boukris E, et al. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study[J]. Marine Pollution Bulletin, 2019, 143: 92-100. doi: 10.1016/j.marpolbul.2019.04.029
    [23]
    Kole P J, Löhr A J, van Belleghem F G A J, et al. Wear and tear of tyres: A stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. doi: 10.3390/ijerph14101265
    [24]
    Rødland E S, Samanipour S, Rauert C, et al. A novel method for the quantification of tire and polymer-modified bitumen particles in environmental samples by pyrolysis gas chromatography mass spectroscopy[J]. Journal of Hazardous Materials, 2022, 423: 127092. doi: 10.1016/j.jhazmat.2021.127092
    [25]
    O'Kelly B C, Soltani A. Discussion of "Behaviour of a foam mixture as a lightweight construction material"[Int. J. of Geosynth. and Ground Eng. (2021) 7(3), 51][J]. International Journal of Geosynthetics and Ground Engineering, 2018, 2022, 8(2): 30.
    [26]
    Li M, Wen K, Li L, et al. Mechanical properties of expanded polystyrene beads stabilized lightweight soil[J]. Geomechanics and Engineering, 2017, 13(3): 459-474.
    [27]
    Zhang Y, Gao T, Kang S, et al. Importance of atmospheric transport for microplastics deposited in remote areas[J]. Environmental Pollution, 2019, 254: 112953. doi: 10.1016/j.envpol.2019.07.121
    [28]
    Zhou Y, Li M, He Q, et al. Deformation and damping characteristics of lightweight clay-EPS soil under cyclic loading[J]. Advances in Civil Engineering, 2018: 8093719.
    [29]
    Zhou Y, Li M, Wen K, et al. Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading[J]. Geomechanics and Engineering, 2019, 17(6): 507-513.
    [30]
    Monkul M M, Özhan H O. Microplastic contamination in soils: A review from geotechnical engineering view[J]. Polymers, 2021, 13(23): 4129. doi: 10.3390/polym13234129
    [31]
    Ji X, Ma Y, Zeng G, et al. Transport and fate of microplastics from riverine sediment dredge piles: Implications for disposal[J]. Journal of Hazardous Materials, 2021, 404: 124132. doi: 10.1016/j.jhazmat.2020.124132
    [32]
    王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Coastal zone sea-land interaction process and its ecological effect research progress[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [33]
    Golwala H, Zhang X, Iskander S M, et al. Solid waste: An overlooked source of microplastics to the environment[J]. Science of the Total Environment, 2021, 769: 144581. doi: 10.1016/j.scitotenv.2020.144581
    [34]
    Goli V S N S, Paleologos E K, Farid A, et al. Extraction, characterisation and remediation of microplastics from organic solid matrices[J]. Environmental Geotechnics, 2022: 2100072.
    [35]
    He P, Chen L, Shao L, et al. Municipal solid waste(MSW)landfill: A source of microplastics?: Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38-45. doi: 10.1016/j.watres.2019.04.060
    [36]
    Ren Z, Gui X, Xu X, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants: A critical review[J]. Journal of Hazardous Materials, 2021, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455
    [37]
    Li R, Liu Y, Sheng Y, et al. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil[J]. Environmental Pollution, 2020, 260: 113988. doi: 10.1016/j.envpol.2020.113988
    [38]
    Watteau F, Dignac M F, Bouchard A, et al. Microplastics detection in soil amended with municipal solid waste composts as revealed by transmission electron microscopy and pyrolysis/GC/MS[J]. Frontiers in Sustainable Food Systems, 2018, 2: 81. doi: 10.3389/fsufs.2018.00081
    [39]
    Manikanda Bharath K, Usha N, Vaikunth R, et al. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater[J]. Chemosphere, 2021, 277: 130263. doi: 10.1016/j.chemosphere.2021.130263
    [40]
    Rillig M C, Lehmann A, de Souza Machado A A, et al. Microplastic effects on plants[J]. New Phytologist, 2019, 223(3): 1066-1070. doi: 10.1111/nph.15794
    [41]
    叶芯瑶, 吴鸣, 胡晓农, 等. 纳米塑料颗粒在饱和多孔介质中的迁移规律[J]. 地质科技通报, 2022, 41(4): 225-233. doi: 10.19509/j.cnki.dzkq.2021.0064

    Ye X Y, Wu M, Hu X N, et al. Nano plastic particles migration patterns in saturated porous media[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 225-233(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0064
    [42]
    O'Connor D, Pan S, Shen Z, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534. doi: 10.1016/j.envpol.2019.03.092
    [43]
    Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [44]
    Huerta L E, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523-531. doi: 10.1016/j.envpol.2016.09.096
    [45]
    Zhu D, Bi Q F, Xiang Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154. doi: 10.1016/j.envpol.2017.12.058
    [46]
    Samandra S, Johnston J M, Jaeger J E, et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia[J]. Science of the Total Environment, 2022, 802: 149727. doi: 10.1016/j.scitotenv.2021.149727
    [47]
    Zhang X, Chen Y, Li X, et al. Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall[J]. Science of the Total Environment, 2022, 815: 152507. doi: 10.1016/j.scitotenv.2021.152507
    [48]
    Panno S V, Kelly W R, Scott J, et al. Microplastic contamination in karst groundwater systems[J]. Groundwater, 2019, 57(2): 189-196. doi: 10.1111/gwat.12862
    [49]
    Goeppert N, Goldscheider N. Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer[J]. Journal of Hazardous Materials, 2021, 408: 124844. doi: 10.1016/j.jhazmat.2020.124844
    [50]
    Viaroli S, Lancia M, Re V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 2022, 824: 153851. doi: 10.1016/j.scitotenv.2022.153851
    [51]
    Johnson A C, Ball H, Cross R, et al. Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales[J]. Environmental Science and Technology, 2020, 54(19): 12326-12334. doi: 10.1021/acs.est.0c03211
    [52]
    Selvam S, Jesuraja K, Venkatramanan S, et al. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal South India[J]. Journal of Hazardous Materials, 2021, 402: 123786. doi: 10.1016/j.jhazmat.2020.123786
    [53]
    Luo Y, Zhang Y, Xu Y, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties[J]. Science of the Total Environment, 2020, 726: 138389. doi: 10.1016/j.scitotenv.2020.138389
    [54]
    Koskei K, Munyasya A N, Wang Y B, et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem[J]. Journal of Hazardous Materials, 2021, 414: 125521. doi: 10.1016/j.jhazmat.2021.125521
    [55]
    Machado A A D, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052.
    [56]
    Cuello J P, Hwang H Y, Gutierrez J, et al. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation[J]. Applied Soil Ecology, 2015, 91: 48-57. doi: 10.1016/j.apsoil.2015.02.007
    [57]
    Jiang X, Chang Y, Zhang T, et al. Toxicological effects of polystyrene microplastics on earthworm(Eisenia fetida)[J]. Environmental Pollution, 2020, 259: 113896. doi: 10.1016/j.envpol.2019.113896
    [58]
    Kwak J I, An Y J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability[J]. Journal of Hazardous Materials, 2021, 402: 124034. doi: 10.1016/j.jhazmat.2020.124034
    [59]
    Lackmann C, Velki M, Šimiĉ A, et al. Two types of microplastics(polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner[J]. Environment International, 2022, 163: 107190. doi: 10.1016/j.envint.2022.107190
    [60]
    Al-Lihaibi S, Al-Mehmadi A, Alarif W M, et al. Microplastics in sediments and fish from the Red Sea coast at Jeddah(Saudi Arabia)[J]. Environmental Chemistry, 2019, 16(8): 641-650. doi: 10.1071/EN19113
    [61]
    Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781. doi: 10.1016/j.chemosphere.2019.03.163
    [62]
    Li Z, Li Q, Li R, et al. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research, 2021, 28(13): 16042-16053. doi: 10.1007/s11356-020-11702-2
    [63]
    Loppi S, Roblin B, Paoli L, et al. Accumulation of airborne microplastics in lichens from a landfill dumping site(Italy)[J]. Scientific Reports, 2021, 11: 4564. doi: 10.1038/s41598-021-84251-4
    [64]
    Azeem I, Adeel M, Ahmad M A, et al. Uptake and accumulation of nano/microplastics in plants: A critical review[J]. Nanomaterials, 2021, 11(11): 2935. doi: 10.3390/nano11112935
    [65]
    Gao H, Yan C, Liu Q, et al. Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis[J]. Science of the Total Environment, 2019, 651: 484-492. doi: 10.1016/j.scitotenv.2018.09.105
    [66]
    Luo Y M, Li L Z, Feng Y D, et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer[J]. Nature Nanotechnology, 2022, 17(4): 424-431. doi: 10.1038/s41565-021-01063-3
    [67]
    Mateos-Cárdenas A, van Pelt F N A M, O'Halloran J, et al. Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284: 117183. doi: 10.1016/j.envpol.2021.117183
    [68]
    Ashwood F, Butt K R, Doick K J, et al. Investigating tree foliar preference by the earthworms Aporrectodea longa and Allolobophora chlorotica in reclaimed and loam soil[J]. Applied Soil Ecology, 2017, 110: 109-117. doi: 10.1016/j.apsoil.2016.10.007
    [69]
    Guo J J, Huang X P, Xiang L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International, 2020, 137: 105263. doi: 10.1016/j.envint.2019.105263
    [70]
    Gerhardt A. Plastic additive Bisphenol A: Toxicity in surface- and groundwater crustaceans[J]. Journal of Toxicology and Risk Assessment, 2019, 5(1): 017.
    [71]
    Kim S W, An Y J. Soil microplastics inhibit the movement of springtail species[J]. Environment International, 2019, 126: 699-706. doi: 10.1016/j.envint.2019.02.067
    [72]
    Prata J C. Airborne microplastics: Consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043
    [73]
    Zhang M, Zhao Y, Qin X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil[J]. Science of the Total Environment, 2019, 688: 470-478. doi: 10.1016/j.scitotenv.2019.06.108
    [74]
    Daniel D B, Ashraf P M, Thomas S N. Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India[J]. Environmental Pollution, 2020, 266: 115365. doi: 10.1016/j.envpol.2020.115365
    [75]
    Kedzierski M, Lechat B, Sire O, et al. Microplastic contamination of packaged meat: Occurrence and associated risks[J]. Food Packaging and Shelf Life, 2020, 24: 100489. doi: 10.1016/j.fpsl.2020.100489
    [76]
    刘伟, 段佳文, 赵瑞超, 等. 宜昌长江南岸岩溶地下水中水生动物群落分布特征及其环境响应[J]. 地质科技通报, 2022, 41(5): 273-282. doi: 10.19509/j.cnki.dzkq.2022.0218

    Liu W, Duan J W, Zhao R C, et al. Distribution characteristics and environmental response of aquatic animal communities in karst groundwater on the south bank of Yichang Yangtze River[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 273-282(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0218
    [77]
    Senathirajah K, Attwood S, Bhagwat G, et al. Estimation of the mass of microplastics ingested: A pivotal first step towards human health risk assessment[J]. Journal of Hazardous Materials, 2021, 404: 124004. doi: 10.1016/j.jhazmat.2020.124004
    [78]
    Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environmental International, 2022, 163: 107199. doi: 10.1016/j.envint.2022.107199
    [79]
    Mohamed Nor N H, Kooi M, Diepens N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology, 2021, 55(8): 5084-5096.
    [80]
    Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool: A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. doi: 10.7326/M19-0618
    [81]
    Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274. doi: 10.1016/j.envint.2020.106274
    [82]
    Deng Y, Zhang Y. Response to Uptake of microplastics and related health effects: A critical discussion of Deng et al., Scientific reports 7: 46687, 2017[J]. Archives of Toxicology, 2019, 93: 213-215.
    [83]
    Mishra S, Rath C C, Das A P. Marine microfiber pollution: A review on present status and future challenges[J]. Marine Pollution Bulletin, 2019, 140: 188-197. doi: 10.1016/j.marpolbul.2019.01.039
    [84]
    Ribeiro F, O'Brien J W, Galloway T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms[J]. TrAC Trends in Analytical Chemistry, 2019, 111: 139-147. doi: 10.1016/j.trac.2018.12.010
    [85]
    Enyoh C E, Verla A W, Verla E N, et al. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks[J]. Environmental Monitoring and Assessment, 2019, 191: 668. doi: 10.1007/s10661-019-7842-0
    [86]
    Goli V S N S, Mohammad A, Singh D N. Application of municipal plastic waste as a manmade neo-construction material: Issues & wayforward[J]. Resources, Conservation and Recycling, 2020, 161: 105008. doi: 10.1016/j.resconrec.2020.105008
    [87]
    Knobloch E, Ruffell H, Aves A, et al. Comparison of deposition sampling methods to collect airborne microplastics in Christchurch, New Zealand[J]. Water, Air, and Soil Pollution, 2021, 232(4): 133. doi: 10.1007/s11270-021-05080-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(477) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return