Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Tan Yuhan, Zhang Fengsheng, Yao Yabin, Wu Heng, Nian Tao. Logging evaluation of shale laminae: A case study from the Wufeng-Longmaxi formations in the southern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 281-296. doi: 10.19509/j.cnki.dzkq.tb20220385
Citation: Tan Yuhan, Zhang Fengsheng, Yao Yabin, Wu Heng, Nian Tao. Logging evaluation of shale laminae: A case study from the Wufeng-Longmaxi formations in the southern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 281-296. doi: 10.19509/j.cnki.dzkq.tb20220385

Logging evaluation of shale laminae: A case study from the Wufeng-Longmaxi formations in the southern Sichuan Basin

doi: 10.19509/j.cnki.dzkq.tb20220385
  • Received Date: 19 Jul 2022
  • Accepted Date: 13 Sep 2022
  • Rev Recd Date: 07 Sep 2022
  • <p>Shale laminae influence shale reservoir quality and fracturing, whereas previous studies are simply based on geological materials. Taking full advantage of geophysical logging data could provide novel insights for shale laminae evaluation in drilled boreholes.</p></sec><sec><title>Methods

    Cored boreholes in the Wufeng-Longmaxi formations in the southern Sichuan Basin are utilized in this study. Shale cores, CT scanning based on full-diameter cores, large-sized thin sections, X-ray diffraction, and TOC content are first integrated to clarify shale laminae fabrics. Elemental scanning, microresistivity electrical imaging, multipole array acoustic, conventional and nuclear magnetic resonance logging techniques are interpreted to characterize shale laminae by geological calibration, and the methodology of logging evaluation on shale laminae has been set out.

    Results

    It is concluded that the target formation has developed four types of bed, includingthe silicic bed (lamina poorly developed), silicic lamina, calcareous lamina, and argillaceous lamina. Elemental scanning is implemented to determine laminae minerals and TOC content. Electrical imaging and the anisotropy index derived from multipole array acoustic and conventional logs are used to evaluate lamina density or development degree. Besides, electrical imaging is able to reflect the lamina thickness. Nuclear magnetic resonance is performed to analyze the variation in lamina pore structure.

    Conclusion

    Although logging resolution and response complexity can significantly affect the accuracy of logging interpretation of shale laminae, logging techniques rooted in petrophysical properties are valuable supplements for the evaluation of shale laminae and lamina associations.

     

  • loading
  • [1]
    蔡毅, 朱如凯, 吴松涛, 等. 泥岩与页岩特征辨析[J]. 地质科技通报, 2022, 41(3): 96-107. doi: 10.19509/j.cnki.dzkq.2022.0084

    Cai Y, Zhu R K, Wu S T, et al. Discussion on characteristics of mudstone and shale[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 96-107(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0084
    [2]
    王冠民, 钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志, 2004, 23(1): 43-48. doi: 10.3969/j.issn.1000-6524.2004.01.006

    Wang G M, Zhong J H. A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Mineralogica, 2004, 23(1): 43-48(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2004.01.006
    [3]
    Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. doi: 10.1016/j.sedgeo.2017.09.001
    [4]
    林长木, 王红岩, 梁萍萍, 等. 川南地区五峰组-龙马溪组黑色页岩纹层特征及其储集意义[J]. 地层学杂志, 2019, 43(2): 133-140.

    Lin C M, Wang H Y, Liang P P, et al. The characteristics of laminae and its reservoir significance in black shale: Taking the Wufeng-Longmaxi formations in the Changning-Shuanghe section as an example[J]. Journal of Stratigraphy, 2019, 43(2): 133-140(in Chinese with English abstract).
    [5]
    王超, 张柏桥, 舒志国, 等. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义[J]. 地球科学, 2019, 44(3): 972-982.

    Wang C, Zhang B Q, Shu Z G, et al. Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J]. Earth Science, 2019, 44(3): 972-982(in Chinese with English abstract).
    [6]
    衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 2015, 34(2): 228-237. doi: 10.13722/j.cnki.jrme.2015.02.002

    Heng S, Yang C H, Guo Y T, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228-237(in Chinese with English abstract). doi: 10.13722/j.cnki.jrme.2015.02.002
    [7]
    侯鹏, 高峰, 张志镇, 等. 黑色页岩力学特性及气体压裂层理效应研究[J]. 岩石力学与工程学报, 2016, 35(4): 670-681. doi: 10.13722/j.cnki.jrme.2015.0469

    Hou P, Gao F, Zhang Z Z, et al. Mechanical property and bedding inclination effect on gas fracturing of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4): 670-681(in Chinese with English abstract). doi: 10.13722/j.cnki.jrme.2015.0469
    [8]
    熊周海, 操应长, 王冠民, 等. 湖相细粒沉积岩纹层结构差异对可压裂性的影响[J]. 石油学报, 2019, 40(1): 74-85.

    Xiong Z H, Cao Y C, Wang G M, et al. Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2019, 40(1): 74-85(in Chinese with English abstract).
    [9]
    解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302

    Xie J Y, Lu H Z, Chen L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0302
    [10]
    董大忠, 施振生, 管全中, 等. 四川盆地五峰组-龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm

    Dong D Z, Shi Z S, Guan Q Z, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm
    [11]
    董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素: 以长宁双河剖面五峰组-龙马溪组为例[J]. 石油勘探与开发, 2018, 45(5): 763-774. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htm

    Dong D Z, Shi Z S, Sun S S, et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 763-774(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805003.htm
    [12]
    邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm

    Zou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
    [13]
    柳波, 吕延防, 孟元林, 等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义: 以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2015, 42(5): 598-607. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505006.htm

    Liu B, Lv Y F, Meng Y L, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505006.htm
    [14]
    Qiu Z, Tao H F, Zou C N, et al. Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2016, 140: 97-107. doi: 10.1016/j.petrol.2016.01.014
    [15]
    张顺, 刘惠民, 陈世悦, 等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨: 以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报, 2017, 91(5): 1108-1119.

    Zhang S, Liu H M, Chen S Y, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119(in Chinese with English abstract).
    [16]
    王苗, 陆建林, 左宗鑫, 等. 纹层状细粒沉积岩特征及主控因素分析: 以渤海湾盆地东营凹陷沙四上-沙三下亚段为例[J]. 石油实验地质, 2018, 40(4): 470-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804003.htm

    Wang M, Lu J L, Zuo Z X, et al. Characteristics and dominating factors of lamellar fine-grained sedimentary rocks: A case study of the Upper Es4 Member-Lower Es3 Member, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 470-478(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201804003.htm
    [17]
    王岚, 曾雯婷, 夏晓敏, 等. 松辽盆地齐家-古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908006.htm

    Wang L, Zeng W T, Xia X M, et al. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression, Songliao Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908006.htm
    [18]
    葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6): 1244-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006020.htm

    Xi K L, Li K, Cao Y C, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-Member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1244-1255(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006020.htm
    [19]
    姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039.

    Jiang Z X, Liang C, Wu J, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039(in Chinese with English abstract).
    [20]
    施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2): 339-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201802019.htm

    Shi Z S, Qiu Z, Dong D Z, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201802019.htm
    [21]
    施振生, 董大忠, 王红岩, 等. 含气页岩不同纹层及组合储集层特征差异性及其成因: 以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发, 2020, 47(4): 829-840. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004022.htm

    Shi Z S, Dong D Z, Wang H Y, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004022.htm
    [22]
    杨博伟, 熊敏, 陈雷, 等. 川东南龙马溪组海相页岩纹层发育特征[J]. 地球科学前沿, 2020, 10(7): 555-562.

    Yang B W, Xiong M, Chen L, et al. Laminae growth characteristic within the Lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin[J]. Advances in Geosciences, 2020, 10(7): 555-562(in Chinese with English abstract).
    [23]
    华柑霖, 吴松涛, 邱振, 等. 页岩纹层结构分类与储集性能差异: 以四川盆地龙马溪组页岩为例[J]. 沉积学报, 2021, 39(2): 281-296.

    Hua G L, Wu S T, Qiu Z, et al. Lamination texture and its effect on reservoir properties: A case study of Longmaxi shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 281-296(in Chinese with English abstract).
    [24]
    王贵文, 郭荣坤. 测井地质学[M]. 北京: 石油工业出版社, 2000.

    Wang G W, Guo R K. Logging geology[M]. Beijing: Petroleum Industry Press, 2000(in Chinese).
    [25]
    朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264.

    Zhu R K, Li M Y, Yang J R, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264(in Chinese with English abstract).
    [26]
    汪泽成, 赵文智, 张林, 等. 四川盆地构造层序与天然气勘探[M]. 北京: 地质出版社, 2002.

    Wang Z C, Zhao W Z, Zhang L, et al. The structural sequence of the Sichuan Basin and the natural gas exploration[M]. Beijing: Geological Publishing House, 2002(in Chinese).
    [27]
    何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm

    He D F, Li D S, Zhang G W, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm
    [28]
    孙莎莎, 苪昀, 董大忠, 等. 中、上扬子地区晚奥陶世-早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质, 2018, 39(6): 1087-1106.

    Sun S S, Rui Y, Dong D Z, et al. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6): 1087-1106(in Chinese with English abstract).
    [29]
    陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358.

    Chen X, Fan J X, Zhang Y D, et al. Subdivision and delineation of the Wufeng and Longmaxi black shales in the subsurface areas of the Yangtze platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358(in Chinese with English abstract).
    [30]
    邓新, 杨坤光, 刘彦良, 等. 黔中隆起性质及其构造演化[J]. 地学前缘, 2010, 17(3): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003009.htm

    Deng X, Yang K G, Liu Y L, et al. Characteristics and tectonic evolution of Qianzhong Uplift[J]. Earth Science Frontiers, 2010, 17(3): 79-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003009.htm
    [31]
    李皎, 何登发, 梅庆华. 四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化[J]. 石油学报, 2015, 36(4): 427-445. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504004.htm

    Li J, He D F, Mei Q H. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(4): 427-445(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504004.htm
    [32]
    郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示: 以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643-651.

    Guo T L, Liu R B. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in Well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651(in Chinese with English abstract).
    [33]
    陈旭, Bergström Stig M. 奥陶系研究百余年: 从英国标准到国际标准[J]. 地层学杂志, 2008, 32(1): 1-14.

    Chen X, Bergström S M. Ordovician study in hundred years: From British series to international standard[J]. Journal of Stratigraphy, 2008, 32(1): 1-14(in Chinese with English abstract).
    [34]
    戎嘉余. 再论志留纪年代地层的统、阶层型研究[J]. 地层学杂志, 2005, 29(2): 160-164.

    Rong J Y. A reappraisal of the Silurian GSSPs[J]. Journal of Stratigraphy, 2005, 29(2): 160-164(in Chinese with English abstract).
    [35]
    Chen X, Rong J Y, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 353-372.
    [36]
    戎嘉余. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J]. 地层学杂志, 1984, 8(1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198401002.htm

    Rong J Y. Ecostratigraphic evidence and glaciation influence on the Late Ordovician regression in the Upper Yangtze region[J]. Journal of Stratigraphy, 1984, 8(1): 19-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198401002.htm
    [37]
    戎嘉余, 詹仁斌. 奥陶纪末集群灭绝后腕足动物复苏的主要源泉: 论先驱型生物的分类[J]. 中国科学: 地球科学, 1999, 29(3): 232-239.

    Rong J Y, Zhan R B. The main sources of brachiopod recovery after the Ordovician mass extinction: On the classification of pioneer organisms[J]. Science in China: Earth Science, 1999, 29(3): 232-239(in Chinese with English abstract).
    [38]
    张靖宇, 陆永潮, 付孝悦, 等. 四川盆地涪陵地区五峰组-龙马溪组一段层序格架与沉积演化[J]. 地质科技情报, 2017, 36(4): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704009.htm

    Zhang J Y, Lu Y C, Fu X Y, et al. Sequence stratigraphic framework and sedimentary evolution of the Wufeng Formation-the 1st Member of Longmaxi Formation in Fuling area, Sichuan Basin[J]. Geological Science and Technology Information, 2017, 36(4): 65-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704009.htm
    [39]
    王川, 董田, 蒋恕, 等. 中扬子地区上奥陶统-下志留统五峰组-龙马溪组页岩纵向非均质性及主控因素[J]. 地质科技通报, 2022, 41(3): 108-121. doi: 10.19509/j.cnki.dzkq.2021.0053

    Wang C, Dong T, Jiang S, et al. Vertical heterogeneity and the main controlling factors of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shales in the Middle Yangtze region[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 108-121(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0053
    [40]
    Safinya K A, Le Lan P, Villegas M, et al. Improved formation imaging with extended microelectrical arrays[C]//Anon. The Society of Petroleum Engineers, the 66th Annual Technical Conference and Exhibition. [S. l.]: [s. n.], 1991: 653-659.
    [41]
    年涛. 微电阻率扫描成像测井技术及其在地球科学领域的应用[M]. 北京: 科学出版社, 2021.

    Nian T. Micro-resistivity scanner imager and its application in earth science[M]. Beijing: Science Press, 2021(in Chinese).
    [42]
    赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学, 2016, 27(2): 377-386. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602022.htm

    Zhao J H, Jin Z J, Jin Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602022.htm
    [43]
    管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制: 以四川盆地上奥陶统五峰组-下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104004.htm

    Guan Q Z, Dong D Z, Zhang H L, et al. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(4): 1-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104004.htm
    [44]
    Nian T, Wang G W, Xiao C W, et al. Determination of in situ stress orientation and subsurface fracture analysis from image-core integration: An example from ultra-deep tight sandstone (BSJQK Formation) in the Kelasu Belt, Tarim Basin[J]. Journal of Petroleum Science and Engineering, 2016, 147: 495-503.
    [45]
    王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4): 551-561. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204004.htm

    Wang Y M, Dong D Z, Li J Z, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Acta Petrolei Sinica, 2012, 33(4): 551-561(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204004.htm
    [46]
    陈文玲, 周文, 罗平, 等. 四川盆地长芯1井下志留统龙马溪组页岩气储层特征研究[J]. 岩石学报, 2013, 29(3): 1073-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303028.htm

    Chen W L, Zhou W, Luo P, et al. Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 Well, Southeast Sichuan Basin, China[J]. Acta Petrologica Sinica, 29(3): 1073-1086(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303028.htm
    [47]
    王红岩, 董大忠, 施振生, 等. 川南海相页岩岩石相类型及"甜点"分布: 以长宁双河剖面五峰组-龙马溪组为例[J]. 油气藏评价与开发, 2022, 12(1): 68-81.

    Wang H Y, Dong D Z, Shi Z S, et al. Lithfacies and "sweet spot" interval of marine shale in southern Sichuan: A case study of Shuanghe outcrop in Wufeng-Longmaxi formations, Changning[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 68-81(in Chinese with English abstract).
    [48]
    Wang C, Zhang B Q, Hu Q H, et al. Laminae characteristics and influence on shale gas reservoir quality of Lower Silurian Longmaxi Formation in the Jiaoshiba area of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 839-851.
    [49]
    桂俊川, 马天寿, 陈平. 横观各向同性页岩岩石物理模型建立: 以龙马溪组页岩为例[J]. 地球物理学报, 2020, 63(11): 4188-4204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202011020.htm

    Gui J C, Ma T S, Chen P. Rock physics modeling of transversely isotropic shale: An example of the Longmaxi Formation in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2020, 63(11): 4188-4204(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202011020.htm
    [50]
    Sinha B K, Kostek S. Stress-induced azimuthal anisotropy in borehole flexural wave[J]. Geophysics, 1996, 61(3): 1899-1907.
    [51]
    Winkler K W, Sinha B K, Plona T J. Effects of borehole stress concentrations on dipole anisotropy measurements[J]. Geophysics, 1998, 63(1): 11-17.
    [52]
    Plona T J, Kane M R, Sinha B K, et al. Evaluating stress-induced anisotropy and mechanical damage from cross-dipole sonic data using dispersion analysis[C]//Anon. The SPE/ISRM Rock Mechanics Conference. [S. l.]: [s. n.], 2002: 1-6.
    [53]
    王仁铎. 利用测井曲线形态特征定量判别沉积相[J]. 地球科学: 中国地质大学学报, 1991, 16(3): 303-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199103012.htm

    Wang R D. Quantitative discrimination of sedimentary facies by use of shape characteristics of log curves[J]. Earth Sciences: Journal of China University of Geosciences, 1991, 16(3): 303-309(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199103012.htm
    [54]
    雍世和, 文政. 用Bayes判别法定量识别沉积微相[J]. 测井技术, 1995, 19(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS501.004.htm

    Yong S H, Wen Z. Quantitative discrimination of sedimentary microfacies with Bayes discriminant analysis[J]. Well Logging Technology, 1995, 19(1): 22-27(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS501.004.htm
    [55]
    倪新锋, 田景春, 陈洪德, 等. 应用测井资料定量识别沉积微相: 以鄂尔多斯盆地姬塬-白豹地区三叠系延长组为例[J]. 成都理工大学学报: 自然科学版, 2007, 34(1): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200701008.htm

    Ni X F, Tian J C, Chen H D, et al. Quantitative discrimination of sedimentary microfacies by use of log data log data: Taking the Triassic Yanchang Formation in Jiyuan-Baibao region of Ordos Basin for example[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2007, 34(1): 57-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200701008.htm
    [56]
    石玉江, 张海涛, 周金昱, 等. 应用常规测井属性分析进行地层结构划分[J]. 测井技术, 2016, 40(4): 493-497.

    Shi Y J, Zhang H T, Zhou J Y, et al. Division of formation structure using conventional logging attributes analysis[J]. Well Logging Technology, 2016, 40(4): 493-497(in Chinese with English abstract).
    [57]
    Kenyon W E, Day P I, Straley C, et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones[J]. SPE Formation Evaluation, 1988, 3(3): 622-636.
    [58]
    Coates G R, Galford J, Mardon D, et al. A new characterization of bulk-volume irreducible using magnetic resonance[J]. The Log Analyst, 1998, 39(1): 51-63.
    [59]
    王跃鹏, 刘向君, 梁利喜. 页岩力学特性的层理效应及脆性预测[J]. 岩性油气藏, 2018, 30(4): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201804018.htm

    Wang Y P, Liu X J, Liang L X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale[J]. Lithologic Reservoirs, 2018, 30(4): 149-160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201804018.htm
    [60]
    刘国恒, 黄志龙, 姜振学, 等. 鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J]. 天然气地球科学, 2015, 26(3): 408-417. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503003.htm

    Liu G H, Huang Z L, Jiang Z X, et al. The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(3): 408-417(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503003.htm
    [61]
    李贤胜, 刘向君, 熊健, 等. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019, 31(3): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201903018.htm

    Li X S, Liu X J, Xiong J, et al. Influence of bedding on compressional wave characteristics of shales[J]. Lithologic Reservoirs, 2019, 31(3): 152-160(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201903018.htm
    [62]
    肖立志. 我国核磁共振测井应用中的若干重要问题[J]. 测井技术, 2007, 31(5): 401-407.

    Xiao L Z. Some important issues for NMR logging applications in China[J]. Well Logging Technology, 2007, 31(5): 401-407(in Chinese with English abstract).
    [63]
    王子萌, 蒋裕强, 付永红, 等. 基于核磁共振表征渝西地区五峰组-龙一1亚段页岩储层孔隙结构及非均质性[J]. 地球科学, 2022, 47(2): 490-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202008.htm

    Wang Z M, Jiang Y Q, Fu Y H, et al. Characterization of pore structure and heterogeneity of shale reservoir from Wufeng Formation-sublayers Long-11 in western Chongqing based on nuclear magnetic resonance[J]. Earth Science, 2022, 47(2): 490-504(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202008.htm
    [64]
    Mao Z Q, Kuang L C, Sun Z C, et al. Effects of hydrocarbon on deriving pore structure in formation from NMR T2 data[C]//Anon. The SPWLA 48th Annual Logging Symposium. [S. l.]: [s. n.], 2007: 1-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(184) PDF Downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return