Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
WANG Fang, XIONG Jie, TIAN Huixiao, LI Siping, KANG Jiashuai. Two-dimensional magnetotelluric inversion method based on deep learning[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 344-354. doi: 10.19509/j.cnki.dzkq.tb20220471
Citation: WANG Fang, XIONG Jie, TIAN Huixiao, LI Siping, KANG Jiashuai. Two-dimensional magnetotelluric inversion method based on deep learning[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 344-354. doi: 10.19509/j.cnki.dzkq.tb20220471

Two-dimensional magnetotelluric inversion method based on deep learning

doi: 10.19509/j.cnki.dzkq.tb20220471
More Information
  • Objective

    The inversion of magnetotelluric sounding data to improve the accuracy of data interpretation has always been an essential topic in magnetotelluric sounding.

    Methods

    To address the problems of traditional magnetotelluric inversion methods, such as the dependence of the initial model and the ease of falling into a local optimum, this paper proposes a magnetotelluric inversion method based on deep learning.The method begins with the design of the GoogLeNetINV neural network. Then, various geoelectric models are constructed, and apparent resistivity data are extracted via forward modelling in the TM mode, constituting the training dataset. Additionally, the neural network is trained with the training dataset, and the network parameters are adjusted. Finally, the apparent resistivity data are input into the trained GoogLeNetINV neural network to directly obtain the inversion result.

    Results

    The experimental results reveal that the location and resistivity data of the "unlearned" geoelectric model can be inverted quickly and accurately, and the model has good generalization ability. The use of noise data can still yield good inversion results and a certain anti-noise ability.

    Conclusion

    The neural network is applied to the field data processing of the Bendigo Zone, and the resistivity model derived through inversion is consistent with the seismic interpretation. Consequently, the magnetotelluric inversion method based on deep learning can effectively solve the magnetotelluric inversion problem.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202010025.htm

    CHEN X B, ZHAO G Z, TANG J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics, 2005, 48(4): 937-946. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202010025.htm
    [2]
    罗曦, 柳建新, 童孝忠. 基于阻尼高斯-牛顿法的MT二维正则化反演[C]//佚名. 中国地球物理学会第二十七届年会论文集. [出版地不详]: [出版社不详], 2011: 315.

    LUO X, LIU J X, TONG X Z. 2D MT regularization inversion based on damped Gauss-Newton optimization algorithm[C]//Anon. Proceedings of the 27th Annual Meeting of Chinese Geophysical Society. [S. l. ]: [s. n. ], 2011: 315. (in Chinese)
    [3]
    SU Y, YIN C, LIU Y, et al. 2D magnetotelluric sparse regularization inversion based on curvelet transform[J]. Chinese Journal of Geophysics, 2021, 64(1): 314-326.
    [4]
    CONSTABLE S C, PARKER R L, CONSTABLE C G. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3): 289-300. doi: 10.1190/1.1442303
    [5]
    WEI H, ZHOU H W. Least-squares seismic inversion with stochastic conjugate gradient method[J]. Journal of Earth Science, 2015, 26(4): 463-470. doi: 10.1007/s12583-015-0553-8
    [6]
    YANG H, WANG J L, WU J S, et al. Constrained joint inversion of magnetotelluric and seismic data using simulated annealing algorithm[J]. Chinese Journal of Geophysics, 2002, 45(5): 764-776. doi: 10.1002/cjg2.290
    [7]
    何一鸣, 薛国强, 赵炀. 基于量子行为粒子群算法的航空瞬变电磁拟二维反演技术[J]. 地球科学与环境学报, 2020, 42(6): 722-730. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006003.htm

    HE Y M, XUE G Q, ZHAO Y. Quasi-2D stochastic inversion of airbone transient eletromagnetic data based on quantum-behaved particle swarm optimization algorithm[J]. Journal of Earth Sciences and Environment, 2020, 42(6): 722-730. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202006003.htm
    [8]
    熊杰, 孟小红, 刘彩云, 等. 基于差分进化的大地电磁反演[J]. 物探与化探, 2012, 36(3): 448-451. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201203026.htm

    XIONG J, MENG X H, LIU C Y, et al. Magnetotelluric inversion based on differential evolution[J]. Geophysical and Geochemical Exploration, 2012, 36(3): 448-451. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201203026.htm
    [9]
    杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报, 2022, 41(2): 228-238. doi: 10.19509/j.cnki.dzkq.2022.0059

    YANG C, LIU L L, ZHANG Y L, et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 228-238. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0059
    [10]
    MONTAHAEI M, OSKOOI B. Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks[J]. Acta Geophysica, 2014, 62(1): 12-43. doi: 10.2478/s11600-013-0164-7
    [11]
    WANG H, LIU M, XI Z, et al. Magnetotelluric inversion based on BP neural network optimized by genetic algorithm[J]. Chinese Journal of Geophysics, 2018, 61(4): 1563-1575.
    [12]
    LIU Z, CHEN H, REN Z, et al. Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network[J]. Journal of Applied Geophysics, 2021, 188: 104309. doi: 10.1016/j.jappgeo.2021.104309
    [13]
    LIU W, XI Z, WANG H, et al. Two-dimensional deep learning inversion of magnetotelluric sounding data[J]. Journal of Geophysics and Engineering, 2021, 18(5): 627-641. doi: 10.1093/jge/gxab040
    [14]
    廖晓龙, 张志厚, 姚禹, 等. 基于卷积神经网络的大地电磁反演[J]. 中南大学学报(自然科学版), 2020, 51(9): 2546-2557. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009020.htm

    LIAO X L, ZHANG Z H, YAO Y, et al. Magnetotelluric inversion based on convolutional neural network[J]. Journal of Central South University(Science and Technology), 2020, 51(9): 2546-2557. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009020.htm
    [15]
    YANG N, ZHANG Z, YANG J, et al. A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation[J]. Natural Resources Research, 2021, 30(6): 3905-3923. doi: 10.1007/s11053-021-09934-1
    [16]
    薛瑞洁, 熊杰, 张月, 等. 基于卷积神经网络的磁异常反演[J]. 现代地质, 2023, 37(1): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202301019.htm

    XUE R J, XIONG J, ZHANG Y, et al. Inversion of magnetic anomaly based on convolutional neural network[J]. Geoscience, 2023, 37(1): 173-183. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202301019.htm
    [17]
    JIANG F B, DAI Q W, DONG L. Ultra-high density resistivity nonlinear inversion based on principal component-regularized ELM[J]. Chinese Journal of Geophysics, 2015, 58(9): 3356-3369.
    [18]
    陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. doi: 10.19509/j.cnki.dzkq.2020.0407

    CHEN Q Y, LIU G, HE Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0407
    [19]
    王权, 邹艳红. 基于轮廓线层间形态插值的三维地质隐式曲面重构[J]. 地质科技通报, 2023, 42(5): 293-300. doi: 10.19509/j.cnki.dzkq.tb20220003

    WANG Q, ZOU Y H. Three-dimensional geological implicit surface reconstruction based on intermediate contour morphological interpolation[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 293-300. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220003
    [20]
    LEE S K, KIM H J, SONG Y, et al. MT2DInvMatlab: A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion[J]. Computers & Geosciences, 2009, 35(8): 1722-1734.
    [21]
    陈冠宇, 安凯, 李向. 基于卷积神经网络的不良地质体识别与分类[J]. 地质科技情报, 2016, 35(1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601032.htm

    CHEN G Y, AN K, LI X. Identification and classification of adverse geological body based on convolution neural networks[J]. Geological Science and Technology Information, 2016, 35(1): 205-211. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201601032.htm
    [22]
    LEE S K, LEE T J, TOSHIHIRO U, et al. Magnetotelluric measurements along a reflection seismic profile: Reprocessing and reinterpretation of MT data for crustal-scale electric resistivity structure in central Victoria, Australia[J]. Geosciences Journal, 2013, 17(2): 289-299.
    [23]
    CAYLEY R A, KORSCH R J, MOORE D H. Crustal architecture of central Victoria: Results from the 2006 deep crustal reflection seismic survey[J]. Australian Journal of Earth Sciences, 2011, 58(2): 113-156. doi: 10.1080/08120099.2011.543151
    [24]
    RODI W L, MACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1): 174-187. doi: 10.1190/1.1444893
    [25]
    VANDENBERG A H M, WILLMAN C E. The Tasman fold belt system in Victoria[J]. Geological Survey of Victoria, 2003, 48(3): 267-297.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(482) PDF Downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return