Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
HUANG Jian, YUAN Jingqing, ZENG Tan, LIAO Jianhong, HUANG Xiang, WANG Hao. Rockfall fragmentation upon slope impact based on discrete element simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 175-185. doi: 10.19509/j.cnki.dzkq.tb20220513
Citation: HUANG Jian, YUAN Jingqing, ZENG Tan, LIAO Jianhong, HUANG Xiang, WANG Hao. Rockfall fragmentation upon slope impact based on discrete element simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 175-185. doi: 10.19509/j.cnki.dzkq.tb20220513

Rockfall fragmentation upon slope impact based on discrete element simulation

doi: 10.19509/j.cnki.dzkq.tb20220513
More Information
  • Objective

    The impact and fracture of rockfall are important reasons for the difficulty in predicting movement trajectories, and the geometric characteristics of slope bodies are key factors affecting the movement.

    Methods

    To study the crushing process of rockfalls and the influence of slope geometry characteristics on the movement of rockfall blocks, discrete element method (PFC2D) simulation technology was used to establish a rockfall free-fall-impact model to analysethe rock mass structure and slope geometry characteristics of typical rockfall disaster points. The fragmentation process of rockfall under different fall heights and impact angles is analysed, and the block motion velocity, crack number and impact force are obtained. Moreover, the two-parameter Weibull distribution is used to describe the fragmentation degree of blocks.

    Results

    The experimental results reveal that the fracture process can be divided into three stages: Contact-disintegration, extrusion-fragmentation and independent movement. Rock mass fragmentation starts at the impact point, disintegration occurs along the structural plane first, and fragmentation occurs on the new fracture plane. Sudden changes of the block velocity, crack quantity and impact force occur in the contact-disintegration and compression-fragmentation stages. The block velocity plummets, exhibiting a "step effect", and the impact force rises sharply, revealing a "double peak phenomenon". Moreover, when the fall height increases or the impact angle decreases, the "step effect" and "double peak phenomenon" become more obvious. Under the same impact angle, an increase of the fall height results in the increase of impact kinetic energy, thus increasing the degree of fragmentation and decreasing the particle size distribution range and characteristic particle size. At the same fall height, an increase in the impact angle causes that the contact area is reduced, and the degree of breakage is reduced, increasing the particle size distribution range and characteristic particle size.

    Conclusion

    The present results provide technical support for revealing the impact fragmentation mechanism of rockfall slopes and predicting the trajectory of block motion.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    吕权儒, 曾斌, 孟小军, 等. 基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J]. 地质科技通报, 2021, 40(6): 313-325. doi: 10.19509/j.cnki.dzkq.2021.0631

    Lü Q R, ZENG B, MENG X J, et al. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 313-325. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0631
    [2]
    罗刚, 程谦恭, 沈位刚, 等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学, 2022, 47(3): 913-934. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203013.htm

    LUO G, CHENG Q G, SHEN W G, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 47(3): 913-934. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203013.htm
    [3]
    王豪, 黄健, 黄祥, 等. 一种利用Unity3D模拟崩塌三维运动全过程的方法[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1990-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202312010.htm

    WANG H, HUANG J, HUANG X, et al. A Method of using unity 3D to simulate whole process of three-dimensional movement of rockfall[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1990-1998. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202312010.htm
    [4]
    VOLKWEIN A, BRüGGER L, GEES F, et al. Repetitive rockfall trajectory testing[J]. Geosciences, 2018, 8(3): 88. doi: 10.3390/geosciences8030088
    [5]
    魏进兵, 何治良, 杨仲康. 考虑地震危险性的倾倒变形边坡风险定量分析[J]. 地质科技通报, 2022, 41(2): 71-78. doi: 10.19509/j.cnki.dzkq.2022.0018

    WEI J B, HE Z L, YANG Z K. Quantitative risk analysis of toppling slope considering seismic risk[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 71-78. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0018
    [6]
    叶四桥, 陈洪凯, 唐红梅. 落石冲击力计算方法[J]. 中国铁道科学, 2010, 31(6): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006011.htm

    YE S Q, CHEN H K, TANG H M. The calculation method for the impact force of the rockfall[J]. China Railway Seience, 2010, 31(6): 56-62. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006011.htm
    [7]
    刘冀昆, 杨晓琳, 王成虎. S-SARⅡ技术的崩塌临灾应急监测原理及其应用[J]. 地质科技通报, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495

    LIU J K, YANG X L, WANG C H. Principle and application of S-SARⅡ technology for collapse emergency monitoring[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 42-51. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220495
    [8]
    唐红梅, 易朋莹. 危岩落石运动路径研究[J]. 重庆建筑大学学报, 2003, 25(1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200301004.htm

    TANG H M, YI P Y. Research on dangerous rock movement route[J]. Journal of Chongqing Jianzhu University, 2003, 25(1): 17-23. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200301004.htm
    [9]
    何思明, 吴永, 沈均. 泥石流大块石冲击力的简化计算[J]. 自然灾害学报, 2009, 18(5): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200905007.htm

    HE S M, WU Y, SHEN J. Simplified calculation of impact force of massive stone in debris flow[J]. Journal of Natural Disasters, 2009, 18(5): 51-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200905007.htm
    [10]
    DUFRESNE A, BÖSMEIER A, Prager C. Sedimentology of rock avalanche deposits: Case study and review[J]. Earth-Science Reviews, 2016, 163: 234-259. doi: 10.1016/j.earscirev.2016.10.002
    [11]
    LOCAT P, COUTURE R, LEROUEIL S, et al. Fragmentation energy in rock avalanches[J]. Canadian Geotechnical Journal, 2006, 43(8): 830-851. doi: 10.1139/t06-045
    [12]
    BOWMAN E T, TAKE W A, RAITK L, et al. Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 2012, 49(4): 460-471. doi: 10.1139/t2012-007
    [13]
    SAROCCHI B D, NAHMAD-MOLINARI Y. Stick-slip motion and high speed ejecta in granular avalanches detected through a multi-sensors flume[J]. Engineering Geology, 2015, 195: 248-257. doi: 10.1016/j.enggeo.2015.06.019
    [14]
    ZHAO T, CROSTA G B. On the dynamic fragmentation and lubrication of coseismic landslides[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9914-9932. doi: 10.1029/2018JB016378
    [15]
    ZHANG S, YIN Y, LI H, et al. Transport process and mechanism of the Hongshiyan rock avalanche triggered by the 2014 Ludian earthquake, China[J]. Landslides, 2022, 19(8): 1987-2004. doi: 10.1007/s10346-022-01878-8
    [16]
    GIACOMINI A, BUZZI O, RENARD B. Experimental studies on fragmentation of rock falls on impact with rock surfaces[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 708-715. doi: 10.1016/j.ijrmms.2008.09.007
    [17]
    HAUG Ø T, ROSENAU M, LEEVER K, et al. On the energy budgets of fragmenting rockfalls and rockslides: Insights from experiments[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(7): 1310-1327. doi: 10.1002/2014JF003406
    [18]
    吕庆, 周春锋, 于洋, 等. 滚石坡面碰撞破裂效应的试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3359-3366. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1027.htm

    Lü Q, ZHOU C F, YU Y, et al. Experimental study on fragmentation effects of rockfall impact upon slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3359-3366. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1027.htm
    [19]
    LIN Q W, CHENG Q G, LI K, et al. Contributions of rock mass structure to the emplacement of fragmenting rockfalls and rockslides: Insights from laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB019296. doi: 10.1029/2019JB019296
    [20]
    柴波, 陶阳阳, 杜娟, 等. 基于Hoek-Brown准则的节理岩体能量参数估算[J]. 地质科技通报, 2020, 39(1): 78-85. doi: 10.19509/j.cnki.dzkq.2020.0109

    CHAI B, TAO Y Y, DU J, et al. Energetics parameter estimation of jointed rock mass based on Hoek-Brown failure criterion[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 78-85. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0109
    [21]
    CAGNOLI B, PIERSANTI A. Grain size and flow volume effects on granular flow mobility in numerical simulations: 3-D discrete element modeling of flows of angular rock fragments[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2350-2366. doi: 10.1002/2014JB011729
    [22]
    WANG Y, TONON F. Discrete element modeling of rock fragmentation upon impact in rock fall analysis[J]. Rock Mechanics and Rock Engineering, 2011, 44(1): 23-35. doi: 10.1007/s00603-010-0110-9
    [23]
    DE BLASIO F V, CROSTA G B. Fragmentation and boosting of rock falls and rock avalanches[J]. Geophysical Research Letters, 2016, 42(20): 8463-8470.
    [24]
    ZHAO T, CROSTA G B, DATTOLA G, et al. Dynamic fragmentation of jointed rock blocks during rockslide-avalanches: Insights from discrete element analyses[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4): 3250-3269. doi: 10.1002/2017JB015210
    [25]
    XIA G Q, LIU C, XU C, et al. Dynamic analysis of the high-speed and long-runout landslide movement process based on the discrete element method: A case study of the Shuicheng landslide in Guizhou, China[J/OL]. Advances in Civil Engineering, 2021. doi: org/10.1155/2021/8854194.
    [26]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [27]
    冯兴波, 奚悦, 宋丹青, 等. 基于PFC~(2D)岩石颗粒破碎强度和能量的分形模型[J]. 工程地质学报, 2016, 24(4): 629-634. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201604023.htm

    FENG X B, XI Y, SONG D Q, et al. PFC2D based fractal model for tensile strength and breakage energy of rock particle crushing[J]. Journal of Engineering Geology, 2016, 24(4): 629-634. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201604023.htm
    [28]
    孙新坡, 何思明, 于忆骅. 基于离散元法崩塌体动力破碎分析[J]. 浙江工业大学学报, 2015, 43(4): 464-467. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJGD201504022.htm

    SUN X P, HE S M, YU Y H. Dynamic crush analysis of collapse bodies based on the discrete element method[J]. Journal of Zhejiang University of Technology, 2015, 43(4): 464-467. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJGD201504022.htm
    [29]
    LIN Q W, CHENG Q G, XIE Y, et al. Simulation of the fragmentation and propagation of jointed rock masses in rockslides: DEM modeling and physical experimental verification[J]. Landslides, 2020, 18(24): 993-1009.
    [30]
    ZHANG S L, YIN Y P, HU X W, et al. Dynamics and emplacement mechanisms of the successive Baige landslides on the upper reaches of the Jinsha River China[J], Engineering Geology, 2020, 278: 105819. doi: 10.1016/j.enggeo.2020.105819
    [31]
    陈梓华. 基于离散元平直节理接触模型灰岩微裂纹扩展研究[D]. 广州: 华南理工大学, 2019.

    CHEN Z H. Discrete element simulation of limestone micro-fracturing processes with flat joint contact model[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(234) PDF Downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return