Volume 42 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Zheng Changyuan, Lei Hongwu, Cui Yinxiang, Bai Bing, Ji Bei, Liu Yangyang. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 223-232. doi: 10.19509/j.cnki.dzkq.tb20220529
Citation: Zheng Changyuan, Lei Hongwu, Cui Yinxiang, Bai Bing, Ji Bei, Liu Yangyang. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 223-232. doi: 10.19509/j.cnki.dzkq.tb20220529

Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin

doi: 10.19509/j.cnki.dzkq.tb20220529
  • Received Date: 25 Oct 2022
  • Accepted Date: 07 Nov 2022
  • Rev Recd Date: 03 Nov 2022
  • Objective

    Geological storage of CO2 is an important technology for reducing CO2 emissions, and the assessment of CO2 leakage risk is the key to its implementation. Research on natural CO2 leakage is an important means to obtain key information for leakage assessment.

    Methods

    The source of CO2, the characteristics of CO2 leakage, and the relevant response of shallow aquifers to the CO2 leakage have been analysed through field investigations, on-site measurements, and sampling and testing of water, gas and rock.

    Results

    A number of natural CO2 leakages have been discovered in the southern Xining Basin, including CO2-rich springs, CO2-driven cold-water geysers from abandoned wells, and CO2 blowouts, as well as large-scale travertine associated with them. CO2 is the dominant component in the gas phase, and the abundance of carbon isotope of CO2 is between -2.5‰ and -0.4‰, indicating that the leaked CO2 comes from a deep inorganic origin, leaks into shallow confined aquifers through deep faults, and flows and discharges with the groundwater or accumulates secondarily in shallow formations. The concentration of soil 222Rn in areas of CO2 leakage is abnormal (over 9 000 Bq/m3), which can be used as an important method of identifying hidden leakage channels. The groundwater has a pronounced response to CO2 leakage, including a unique phenomenon of intermittent eruptions (eruption for 200 s and incubation for 130 s), changes in groundwater hydrochemical characteristics (e.g., a decrease in pH, an increase in conductance and HCO3- and Ca2+ concentrations, and a drift in oxygen isotopes), and travertine composed mainly of calcite with a bubble structure at the surface. The natural CO2 leakage characteristics at this site are highly similar to those in Utah, USA.

    Conclusion

    The results of this study not only provide knowledge of natural analogous for leakage risk assessment of CO2 geological storage, but also contribute to the understanding of geological activity in the deep earth.

     

  • loading
  • [1]
    IPCC. Global warming of 1.5℃(SR1.5)[M]. Cambridge: Cambridge University Press, 2018.
    [2]
    Damen K, Faaij A, Turkenburg W. Health, safety and environmental risks of underground CO2 storage: Overview of mechanisms and current knowledge[J]. Climatic Change, 2006, 74(1/3): 289-318.
    [3]
    Dockrill B, Shipton Z K. Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, U.S.A. [J]. Journal of Structural Geology, 2010, 32(11): 1768-1782. doi: 10.1016/j.jsg.2010.01.007
    [4]
    Han W S, Lu M, Mcpherson B J, et al. Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: Experimental observation and mechanism analyses[J]. Geofluids, 2013, 13(3): 283-297. doi: 10.1111/gfl.12018
    [5]
    Watson Z, Han W S, Keating E H. Eruption dynamics of CO2-driven cold-water geysers: Crystal, Tenmile geysers in Utah and Chimayó geyser in New Mexico[J]. Earth and Planetary Science Letters, 2014, 408(15): 272-284.
    [6]
    Burnside N M, Shipton Z K, Dockrill B, et al. Man-made versus natural CO2 leakage: A 400 k. y. history of an analogue for engineered geological storage of CO2[J]. Geology, 2013, 41(4): 471-474. doi: 10.1130/G33738.1
    [7]
    Jung N H, Han W S, Watson Z T, et al. Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah[J]. Earth and Planetary Science Letters, 2014, 403: 358-367. doi: 10.1016/j.epsl.2014.07.012
    [8]
    Koh Y, Kim C, Bae D, et al. The isotopic and chemical compositions of the CO2-rich waters in Korea[J]. Geofísica Internacional, 2002, 41(4): 491-498.
    [9]
    Chiodini G, Granieri D, Avino R, et al. Non-volcanic CO2 earth degassing: Case of Mefite d'Ansanto(southern Apemnines), Italy[J]. Geophysical Research Letters, 2010, 37(11): L11303.
    [10]
    王利民, 候元明. 对窑街煤田煤岩与二氧化碳突出的初步探讨[J]. 煤矿安全, 1980, 11(6): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198006005.htm

    Wang L M, Hou Y M. Preliminary discussion on coal rock and carbon dioxide outburst in the Yaojie Coalfield[J]. Safety in Coal Mines, 1980, 11(6): 24-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ198006005.htm
    [11]
    郑长远, 张徽, 师延霞, 等. 青海平安地区CO2气藏成藏模式研究[J]. 西北地质, 2016, 49(3): 148-154. doi: 10.3969/j.issn.1009-6248.2016.03.017

    Zheng C Y, Zhang H, Shi Y X, et al. Study on carbon dioxide gas reservoir accumulation mode in Ping'an region, Qinghai Province[J]. Northwestern Geology, 2016, 49(3): 148-154(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2016.03.017
    [12]
    Cai Y N, Lei H W, Feng G H, et al. Modeling of CO2-driven cold-water geyser in the Northeast Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2021, 598: 125733. doi: 10.1016/j.jhydrol.2020.125733
    [13]
    Schroder I F, Zhang H, Zhang C, et al. The role of soil flux and soil gas monitoring in the characterisation of a CO2 surface leak: A case study in Qinghai, China[J]. International Journal of Greenhouse Gas Control, 2016, 54(1): 84-95.
    [14]
    Zhao X H, Deng H Z, Wang W K, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet Plateau[J]. Scientific Reports, 2017, 7: 3001. doi: 10.1038/s41598-017-02500-x
    [15]
    Afsin M, Kuscu I, Elhatip H, et al. Hydrogeochemical properties of CO2-rich thermal-mineral waters in Kayseri(Central Anatolia), Turkey[J]. Environmental Geology, 2006, 50(1): 24-36. doi: 10.1007/s00254-005-0169-x
    [16]
    Shik-Han W, Watson Z T, Kampman N, et al. Periodic changes in effluent chemistry at cold-water geyser: Crystal geyser in Utah[J]. Journal of Hydrology, 2017, 550: 54-64. doi: 10.1016/j.jhydrol.2017.04.030
    [17]
    Aiuppa A, Federico C, Allard P, et al. Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy[J]. Chemical Geology, 2005, 216(3/4): 289-311.
    [18]
    张森琦, 许伟林, 严维德, 等. 西宁盆地地热地质[M]. 北京: 地质出版社, 2013.

    Zhang S Q, Xu W L, Yan W D, et al. Geothermal geology of Xining Basin[M]. Beijing: Geological Publishing House, 2013(in Chinese).
    [19]
    季备. 西宁至城都铁路拉脊山越岭段主要工程地质问题及地质选线[J]. 铁路标准设计, 2018, 62(8): 21-25.

    Ji B. The main engineering geological problems and geological route selection of Ridge section in Laji Mountain on Xining-Chengdu railway[J]. Railway Standard Design, 2018, 62(8): 21-25(in Chinese with English abstract).
    [20]
    高中亮, 王艳飞, 雷胜兰, 等. 珠江口盆地CO2分布特征与成藏机制浅析[J]. 地质科技通报, 2022, 41(4): 57-68. doi: 10.19509/j.cnki.dzkq.2022.0204

    Gao Z L, Wang Y F, Lei S L, et al. Distribution characteristics and accumulation mechanism of carbon dioxide gas reservoirs in the Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0204
    [21]
    姚志勇. 西宁至成都铁路某隧道高压CO2气体研究及地质选线探析[J]. 现代隧道技术, 2019, 56(2): 170-174.

    Yao Z Y. Study on high pressure CO2 gas in a tunnel of Xining to Chengdu railway and exploration of geological route selection[J]. Modern Tunneling Technology, 2019, 56(2): 170-174(in Chinese with English abstract).
    [22]
    戴金星, 宋岩, 洪峰, 等. 中国东部无机成因的二氧化碳气藏及其特征[J]. 中国海上油气: 地质, 1994, 6(4): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm

    Dai J X, Song Y, Hong F, et al. Inorganic carbon dioxide gas reservoirs in eastern China and their characteristics[J]. China Offshore Oil and Gas: Geology, 1994, 6(4): 3-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm
    [23]
    Rodrigo-Naharro J, Quindos L S, Clemente-Jul C, et al. CO2 degassing from a Spanish natural analogue for CO2 storage and leakage: Implications on 222Rn mobility[J]. Applied Geochemistry, 2017, 84: 297-305. doi: 10.1016/j.apgeochem.2017.07.008
    [24]
    孙红丽, 王贵玲, 蔺文静. 西宁盆地地下热水的TDS分布特征及富集机理[J]. 地质科技通报, 2022, 41(1): 278-287. doi: 10.19509/j.cnki.dzkq.2021.0079

    Sun H L, Wang G L, Lin W J. Distribution characteristics and enrichment mechanism of TDS geothermal water in Xining Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 278-287(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0079
    [25]
    Thomas D L, Bird D K, Arnorsson S, et al. Geochemistry of CO2-rich waters in Iceland[J]. Chemical Geology, 2016, 444: 158-179. doi: 10.1016/j.chemgeo.2016.09.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(130) PDF Downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return