Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
DENG Rilang, ZHANG Qinghua, LIU Wei, CHEN Lingwei, TAN Jianhui, GAO Zemao, ZHENG Xianchang. Collapse susceptibility evaluation based on an improved two-step sampling strategy and a convolutional neural network[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 186-200. doi: 10.19509/j.cnki.dzkq.tb20220535
Citation: DENG Rilang, ZHANG Qinghua, LIU Wei, CHEN Lingwei, TAN Jianhui, GAO Zemao, ZHENG Xianchang. Collapse susceptibility evaluation based on an improved two-step sampling strategy and a convolutional neural network[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 186-200. doi: 10.19509/j.cnki.dzkq.tb20220535

Collapse susceptibility evaluation based on an improved two-step sampling strategy and a convolutional neural network

doi: 10.19509/j.cnki.dzkq.tb20220535
More Information
  • Objective

    Machine learning has been widely applied in the fields of collapse, landslide and debris flow susceptibility analysis. The selection of nonhazard samples is a key issue in landslide susceptibility analysis. Traditional random sampling and manual labelling methods may involve randomness and subjectivity.

    Methods

    In view of the potential randomness and representativeness of noncollapse samples, this paper considered soil collapse susceptibility evaluation a positive-unlabelled (PU) learning problem and proposes a two-step convolutional neural network framework (ISpy-CNN) that combines an information value model and the Spy technique. First, 15 collapse-related factors were selected for modelling based on the geomorphological, geological, hydrological, and artificial environmental conditions of the study area. Low-information-value samples that were able to map the distribution structure of noncollapsing samples were screened by the information value model. Then, through the Spy technique and training the CNN model, negative samples with high confidence were identified from low-information-value samples that were classified as noncollapsed samples. Finally, based on the framework and traditional random sampling, we used support vector machine (SVM) and random forest (RF) models to compare and verify the reliability, prediction accuracy and data sensitivity of the proposed learning framework and other models.

    Results

    The results illustrate that the proposed ISpy-CNN method can improve the accuracy, F1 value, sensitivity and specificity on the validation set by 6.82%, 6.82%, 6.82%, 8.23%, respectively compared to random sampling and 2.86%, 2.89%, 2.86%, 2.31%, respectively compared to the traditional Spy technique. The prediction accuracy of step 2 in PU learning using the CNN model is higher than that of the RF and SVM models. The sample set screened by the ISpy-CNN framework exhibited greater stability, prediction accuracy and growth rate than those screened by the traditional Spy technique by adding the same number of training samples.

    Conclusion

    The ISpy-CNN framework proposed in this paper can better assist in the selection of nonhazard samples and real collapse spatial distribution maps, and the results of the framework are more consistent with the actual collapse distributions.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    胡厚田. 崩塌与落石[M]. 北京: 中国铁道出版社, 1989: 1-2.

    HU H T. Collapse and rockfall[M]. Beijing: China Railway Publishing House, 1989: 1-2. (in Chinese)
    [2]
    国土资源部地质环境司, 国土资源部宣传教育中心. 中国地质灾害与防治[M]. 北京: 地质出版社, 2003: 184-185.

    Geological Environment Department of the Ministry of Natural Resources of the People's Republic of China, Publicity and Education Center of the Ministry of NaturalResources of the People's Republic of China. Geological hazards and prevention in China[M]. Beijing: Geological Publishing House, 2003: 184-185. (in Chinese)
    [3]
    曹洪洋, 袁颖, 贾磊. 区域降雨型滑坡灾害预警预报[M]. 北京: 地质出版社, 2017: 8-10.

    CAO H Y, YUAN Y, JIA L. Early warning and prediction of regional rainfall induced landslide[M]. Beijing: Geological Publishing House, 2017: 8-10. (in Chinese)
    [4]
    温亚楠, 张志华, 慕号伟, 等. 动态多源数据驱动模式下的滑坡灾害空间预测[J]. 自然灾害学报, 2021, 30(3): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202103010.htm

    WEN Y N, ZHANG Z H, MU H W, et al. Landslide disaster spatial prediction under dynamic multi-source data-driven mode[J]. Journal of Natural Disasters, 2021, 30(3): 83-92. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202103010.htm
    [5]
    ADA M, SAN B T. Comparison of machine-learning techniques for landslide susceptibility mapping using two-level randomsampling (2LRS) in Alakir catchment area, Antalya, Turkey[J]. Natural Hazards, 2018, 90(1): 237-263. doi: 10.1007/s11069-017-3043-8
    [6]
    张书豪, 吴光. 随机森林与GIS的泥石流易发性及可靠性[J]. 地球科学, 2019, 44(9): 3115-3134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm

    ZHANG S H, WU G. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019, 44(9): 3115-3134. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909025.htm
    [7]
    田乃满, 兰恒星, 伍宇明, 等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12): 2304-2316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202012004.htm

    TIAN N M, LAN H X, WU Y M, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-information Science, 2020, 22(12): 2304-2316. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202012004.htm
    [8]
    郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm

    GUO Z Z, YIN K L, HUANG F M, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
    [9]
    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版), 2016, 41(5): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htm

    WU X L, SHEN S Q, NIU R Q. Landslide susceptibility prediction using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htm
    [10]
    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    HUANG F M, YIN K L, JIANG S H, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [11]
    余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201309002.htm

    YU K, JIA L, CHEN Y Q, et al. Deep learning: Yesterday, today and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201309002.htm
    [12]
    WANG H, ZHANG L, YIN K, et al. Landslide identification using machine learning[J]. Geoscience Frontiers, 2020, 12(1): 351-364.
    [13]
    SAHA S, ROY J, HEMBRAM T K, et al. Comparison between deep learning and tree-based machine learning approaches for landslide susceptibility mapping[J]. Water, 2021, 13(19): 2664-2693. doi: 10.3390/w13192664
    [14]
    王毅, 方志策, 牛瑞卿, 等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报, 2021, 23(12): 2244-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112012.htm

    WANG Y, FANG Z C, NIU R Q, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-information Science, 2021, 23(12): 2244-2260. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112012.htm
    [15]
    GONG C, LIU T, YANG J, et al. Large-margin label-calibrated support vector machines for positive and unlabeled learning[J]. IEEE Trans. Neural Netw. Learn Syst., 2019, 30(11): 3471-3483. doi: 10.1109/TNNLS.2019.2892403
    [16]
    YAO J, QIN S, QIAO S, et al. Application of a two-step sampling strategy based on deep neural network for landslide susceptibility mapping[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 1-20.
    [17]
    HAN D, LI S, WEI F, et al. Two birds with one stone: Classifying positive and unlabeled examples on uncertain data streams[J]. Neurocomputing, 2018, 277: 149-160. doi: 10.1016/j.neucom.2017.03.094
    [18]
    VILLATORO-TELLO E, ANGUIANO E, MONTESY-GÓMEZ M, et al. Enhancing semi-supervised text classification using document summaries[C]//Anon. Ibero-American Conference on Artificial Intelligence. Switzerland: Cham, 2016: 115.
    [19]
    戴悦. 基于信息量模型的三峡库区滑坡区域危险性评价方法研究[D]. 北京: 清华大学, 2013.

    DAI Y. Study on the method of regional early warning of landslide in Three Gorges area based on information model[D]. Beijing: Tsinghua University, 2013. (in Chinese with English abstract)
    [20]
    周晓亭, 黄发明, 吴伟成, 等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 2022, 54(3): 25-35.

    ZHOU X T, HUANG F M, WU W C, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Science, 2022, 54(3): 25-35. (in Chinese with English abstract)
    [21]
    陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2859-2870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1027.htm

    CHEN F, CAI C, LI X S, et al. Evaluation of landslide susceptibility based on information volume and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2859-2870. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1027.htm
    [22]
    温鑫, 范宣梅, 陈兰, 等. 基于信息量模型的地质灾害易发性评价: 以川东南古蔺县为例[J]. 地质科技通报, 2022, 41(2): 290-299. doi: 10.19509/j.cnki.dzkq.2022.0054

    WEN X, FAN X M, CHEN L, et al. Susceptibility assessment of geological disasters based on an information value model: A case of Gulin County in southeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 290-299. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0054
    [23]
    殷坤龙. 滑坡灾害预测预报[M]. 武汉: 中国地质大学出版, 2001: 19-22.

    YIN K L. Time prediction and risk evaluation of landslide hazard and prospective[M]. Wuhan: China University of Geosciences Press, 2001: 19-22. (in Chinese)
    [24]
    LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
    [25]
    GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
    [26]
    丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201101003.htm

    DING S F, QI B J, TAN H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201101003.htm
    [27]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 178-181.

    ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Publishing House, 2016: 178-181. (in Chinese)
    [28]
    黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087

    HUANG F M, HU S Y, YAN X Y, et al. Landslide susceptibility prediction and its main environmental factors identification based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0087
    [29]
    VU D H, MUTTAQI K M, AGALGAONKAR A P. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables[J]. Applied Energy, 2015, 140: 385-394. doi: 10.1016/j.apenergy.2014.12.011
    [30]
    闫举生, 谭建民. 基于不同因子分级法的滑坡易发性评价: 以湖北远安县为例[J]. 中国地质灾害与防治学报, 2019, 30(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201901006.htm

    YAN J S, TAN J M. Landslide susceptibility assessment based on different factor classification methods: A case study in Yuan'an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 52-60. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201901006.htm
    [31]
    李婷婷, 吕佳, 范伟亚. 基于新型间谍技术的半监督自训练正例无标记学习[J]. 计算机应用, 2019, 39(10): 2822-2828. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201910006.htm

    LI T T, LÜ J, FAN W Y. Semi-supervised self-training positive and unlabeled learning based on new Spy technology[J]. Journal of Computer Application, 2019, 39(10): 2822-2828. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201910006.htm
    [32]
    JUBA B, LE H S. Precision-recall versus accuracy and the role of large data sets[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 4039-4048. doi: 10.1609/aaai.v33i01.33014039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(299) PDF Downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return