Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
XIA Yulei, LAN Jianping, YAO Wei. Micropore structure and movable fluid distribution characteristics of tight sandstone reservoirs: Taking the He 8 reservoir in the Shenmu area of the eastern Ordos Basin as an example[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 41-51. doi: 10.19509/j.cnki.dzkq.tb20220574
Citation: XIA Yulei, LAN Jianping, YAO Wei. Micropore structure and movable fluid distribution characteristics of tight sandstone reservoirs: Taking the He 8 reservoir in the Shenmu area of the eastern Ordos Basin as an example[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 41-51. doi: 10.19509/j.cnki.dzkq.tb20220574

Micropore structure and movable fluid distribution characteristics of tight sandstone reservoirs: Taking the He 8 reservoir in the Shenmu area of the eastern Ordos Basin as an example

doi: 10.19509/j.cnki.dzkq.tb20220574
More Information
  • Corresponding author: XIA Yulei, E-mail: xiaylcqzt@163.com
  • Received Date: 22 Oct 2022
  • Accepted Date: 07 Dec 2022
  • Rev Recd Date: 02 Dec 2022
  • Objective

    The complex pore throat structure of tight sandstone leads to variable distribution of movable fluid, and the micropore structure and distribution characteristics of movable fluid are the focus of the study of tight sandstone reservoirs.

    Methods

    Based on the principle of the nuclear magnetic resonance (NMR) movable fluid test, the classification standard of pore structure of the He 8 reservoir in the Shenmu area was established using centrifugal test, high-pressure mercury injection, scanning electron microscope, X-ray diffraction and casting thin section. The pore structure parameters and pore throat types of the three types of rocks are defined, and a new method for measuring the conversion coefficient suitable for tight sandstone reservoirs was proposed. The distribution characteristics of movable fluid of three types of rocks were also quantitatively evaluated.

    Results

    The results reveal that the type Ⅰ and Ⅱ rock pores in the target reservoir are mainly residual intergranular pores with pore diameters greater than 10 μm and dissolution pores with pore diameters greater than 1 μm. The throats are mainly reduced and curved flaky throats, with good pore structure parameters, a high development degree of large pore space, good connectivity between pore throats, and a large amount of movable fluid.Most of the movable fluid occurs in the macropores corresponding to the right peak of the T2 spectrum, while the content of the movable fluid in the small pores corresponding to the left peak is low. The pore structure parameters of type Ⅲ rocks are poor, the percentage of movable fluid is low, and the pore throats are mainly intergranular pores and tube bundle throats. The average conversion coefficient of the target reservoir is 0.029 μm/ms, but the conversion coefficients of type Ⅰ and Ⅱ rocks are less than that of type Ⅲ rocks. The right peak of the T2 spectrum of type Ⅰ and Ⅱ rocks after conversion corresponds to the main peak of the mercury porosimetry pore radius distribution, while the left peak of the T2 spectrum of type Ⅲ rocks corresponds to the main peak of the distribution of mercury porosimetry pore radius. The percentage of movable fluid in the pores of type Ⅰ and type Ⅱ rocks with pore diameters greater than 1 μm is high, which is the main direction of exploration and development in the future.

    Conclusion

    The results provide a reference for improving the recovery of tight reservoirs.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    付锁堂, 金之钧, 付金华, 等. 鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义[J]. 石油学报, 2021, 42(5): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105001.htm

    FU S T, JIN Z J, FU J H, et al. Transformation of understanding from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development[J]. Acta Petrolei Sinica, 2021, 42(5): 561-569. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105001.htm
    [2]
    GHANIZADEH A, CLARKSON C R, AQUINO S, et al. Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization[J]. Fuel, 2015, 153: 664-681. doi: 10.1016/j.fuel.2015.03.020
    [3]
    赵丁丁, 侯加根, 王秀杰, 等. 致密砂岩气藏不同岩石相孔喉结构对气水相渗特征控制机理: 以鄂尔多斯盆地东胜气田J72井区下石盒子组储层为例[J]. 地质科技通报, 2023, 42(3): 163-174. doi: 10.19509/j.cnki.dzkq.tb20220517

    ZHAO D D, HOU J G, WANG X J, et al. Controlling mechanism of pore-throat structure of different lithofacies on gas-water relative permeability characteristics of tight sandstone gas reservoir: A case study of the Lower Shihezi Formation in the Well J72 block of the Dongsheng Gas Field, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 163-174. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220517
    [4]
    白斌, 朱如凯, 吴松涛, 等. 非常规油气致密储层微观孔喉结果表征新技术及意义[J]. 中国石油勘探, 2015, 19(3): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201403011.htm

    BAI B, ZHU R K, WU S T, et al. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2015, 19(3): 78-86. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201403011.htm
    [5]
    LOUCKS R G, RUPPEL S C. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. doi: 10.1306/11020606059
    [6]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
    [7]
    GANE P A, RIDGWAY C J, LEHTINEN E, et al. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures[J]. Industrial & Engineering Chemistry Research, 2004, 43(24): 7920-7927.
    [8]
    曹永娜. 利用CT扫描技术实现对岩心微观驱替过程的研究[J]. 科学技术与工程, 2015, 15(6): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201506014.htm

    CAO Y N. Study of microscopic blooding process using CT scanning technique[J]. Science Technology and Engineering, 2015, 15(6): 64-68. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201506014.htm
    [9]
    程辉, 王付勇, 宰芸, 等. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202003012.htm

    CHENG H, WANG F Y, ZAI Y, et al. Prediction of tight sandstone permeability based on high-pressure mercury intrusion(HPMI) and nuclear magnetic resonance(NMR)[J]. Lithologic Reservoirs, 2020, 32(3): 122-132. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202003012.htm
    [10]
    MEDINA C R, MASTALERZ M, RUPP J A. Characterization of porosity and pore-size distribution using multiple analytical tools: Implications for carbonate reservoir characterization in geologic storage of CO2[J]. Environmental Geosciences, 2017, 24(1): 51-72. doi: 10.1306/eg.02071716010
    [11]
    崔连训. 恒速压汞及核磁共振在低渗透储层评价中的应用[J]. 成都理工大学学报(自然科学版), 2012, 39(4): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201204014.htm

    CUI L X. Application of constant-rate intruding mercury and nuclear magnetic resonance method to low permeability reservoir evaluation[J]. Journal of Chendu University of Technology(Science & Technology Edition), 2012, 39(4): 430-433. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201204014.htm
    [12]
    MBIA E N, FABRICIUS I L, KROGSBØLL A, et al. Permeability, compressibility and porosity of Jurassic shale from the Norwegian-Danish Basin[J]. Petroleum Geoscience, 2014, 20(3): 257-281. doi: 10.1144/petgeo2013-035
    [13]
    时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析: 以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605009.htm

    SHI J C, QU X F, LEI Q H, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir: A case study of Chang 7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5): 827-834. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605009.htm
    [14]
    PANG X J, WANG G, KUANG L C, et al. Insights into the pore structure and oil mobility in fine-grained sedimentary rocks: The Lucaogou Formation in Jimusar Sag, Junggar Basin, China[J]. Marine and Petroleum Geology, 2022, 137: 105492. doi: 10.1016/j.marpetgeo.2021.105492
    [15]
    代全齐, 罗群, 张晨, 等. 基于核磁共振新参数的致密油砂岩储层孔隙结构特征: 以鄂尔多斯盆地延长组7段为例[J]. 石油学报, 2016, 37(7): 887-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201607007.htm

    DAI Q J, LUO Q, ZHANG C, et al. Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment: A case study of Seven Member in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(7): 887-897. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201607007.htm
    [16]
    YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(11): 152-158.
    [17]
    黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及其影响因素: 以鄂尔多斯盆地姬塬油田延长组长8储层为例[J]. 石油学报, 2019, 40(5): 557-567. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905005.htm

    HUANG X, LI T T, WANG X Z, et al. Distribution characteristics and its influence factors of movable fluid in tight sandstone reservoir: A case study of Chang 8 oil layer of Yanchang Formation Jiyuan Oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 557-567. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905005.htm
    [18]
    ZHANG L C, LU S F, XIAO D S, et al. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China[J]. Marine and Petroleum Geology, 2017, 88: 170-180. doi: 10.1016/j.marpetgeo.2017.08.005
    [19]
    喻建, 杨孝, 李斌, 等. 致密油储层可动流体饱和度计算方法: 以合水地区长7致密油储层为例[J]. 石油实验地质, 2014, 36(6): 767-772. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201406018.htm

    YU J, YANG X, LI B, et al. A method of determining movable fluid saturation of tight oil reservoirs in seventh member of Yanchang Formation in Heshui area[J]. Petroleum Geology & Experiment, 2014, 36(6): 767-772. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201406018.htm
    [20]
    卢振东, 刘成林, 臧起彪, 等. 高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用: 以鄂尔多斯盆地合水地区为例[J]. 地质科技通报, 2022, 41(3): 300-310. doi: 10.19509/j.cnki.dzkq.2021.0256

    LU Z D, LIU C L, ZANG Q B, et al. Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone: A case study of the Heshui area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 300-310. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0256
    [21]
    任颖惠, 吴珂, 何康宁, 等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用: 以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201701012.htm

    REN Y H, WU K, HE K N, et al. Application of NMR technique to movable fluid of ultra-low permeability and tight reservoir: A case study on the Yanchang formation in Longdong area, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1): 103-110. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201701012.htm
    [22]
    罗燕颖, 吴迪, 杜环虹, 等. SY/T 6490-2014岩样核磁共振参数实验室测量规范[S]. 北京: 石油工业出版社, 2014.

    LUO Y Y, WU D, DU H H, et al. SY/T 6490-2014 Specification for measurement of rock NMR parameter in laboratory[S]. Beijing: Petroleum Industry Press, 2014. (in Chinese)
    [23]
    Lyu C, Ning Z, Wang Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy & Fuels, 2018, 32(2): 1395-1405.
    [24]
    黄杰, 杜玉洪, 王红梅, 等. 特低渗储层微观孔隙结构与可动流体赋存特征: 以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202005010.htm

    HUANG J, DU Y H, WANG H M, et al. Characteristics of micro pore structure and movable fluid of extra-low permeability reservoir: A case study of lower Et1 reserovir in A'er Sag, Erlian Basin[J]. Lithologic Reservoirs, 2020, 32(5): 93-101. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202005010.htm
    [25]
    郭睿良, 陈小东, 马晓峰, 等. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805008.htm

    GUO R L, CHEN X D, MA X F, et la. Analysis of the characteristics and its influencing factors of horizontal movable fluid in the Chang 7 tight reservoir in Longdong area, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(5): 665-674. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805008.htm
    [26]
    汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429

    WANG X G, ZHANG C, ZHANG H, et al. Classification and evaluation of low-permeability sand reservoir based on micro-pore structure[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 93-103. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0429
    [27]
    董岩, 肖佃师, 彭寿昌, 等. 页岩油层系储集层微观孔隙非均质性及控制因素: 以吉木萨尔凹陷芦草沟组为例[J]. 矿物岩石地球化学通报, 2021, 40(1): 115-122.

    DONG Y, XIAO D S, PENG S C, et al. Heterogeneity of microscopic pores in shale oil reservoir and its controlling factors: Taking the Lucaogou Formation in the Jimusar Sag as an example[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 115-122. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(215) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return