Volume 42 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Ma Ke, Ma Chong, Zhan Hongbin, Liu Yang. Mixing effect and skin effect on radical solute transport around an injection well[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 130-137. doi: 10.19509/j.cnki.dzkq.tb20220616
Citation: Ma Ke, Ma Chong, Zhan Hongbin, Liu Yang. Mixing effect and skin effect on radical solute transport around an injection well[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 130-137. doi: 10.19509/j.cnki.dzkq.tb20220616

Mixing effect and skin effect on radical solute transport around an injection well

doi: 10.19509/j.cnki.dzkq.tb20220616
  • Received Date: 02 Nov 2022
  • Accepted Date: 13 Apr 2023
  • Rev Recd Date: 13 Apr 2023
  • Objective

    The conceptual model of the single-well push test is a hot topic in groundwater hydrogeology.

    Methods

    In this study, a new mathematical model was developed for radial solute transport in an aquifer near injection wells. The heterogeneity of the aquifer was considered, and the MIM (Mobile-Immobile) convective diffusion model was used to describe the solute transport process in the aquifer. The skin effect and mixing effect are also included in this conceptual model. The semi-analytical solution was derived by using the Laplace transform and Stehfest numerical inverse transform methods. The influence of effective porosity and radial dispersion of the skin zone and the radius of the wellbore on the solute breakthrough curves (BTCs) of a fixed observation point and solute concentration distribution curves at given times were investigated.

    Results

    Results show that wellbore mixing and skin effects have significant impacts on BTCs, solute radial transport processes and the influence area. The larger the radius of the wellbore is, the more obvious the wellbore mixing effect is. For the skin zone, a larger porosity leads to a smaller velocity of solute migration. The larger the radial dispersion is, the steeper the solute concentration curve of the observation point is, indicating that the solute concentration changes at a faster rate and can reach a stable value earlier.

    Conclusion

    Compared with previous studies, this model can better describe the solute radial dispersion process near the injection wells.

     

  • loading
  • [1]
    Wang Y, Zheng C, Ma R. Safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018, 26(5): 1301-1324. doi: 10.1007/s10040-018-1795-1
    [2]
    王攀, 靳孟贵, 路东臣, 等. 永城市浅层地下水污染分布特征及来源识别[J]. 地质科技通报, 2022, 41(1): 260-268. doi: 10.19509/j.cnki.dzkq.2021.0136

    Wang P, Jin M G, Lu D C, et al. Distribution characteristics and source idenfication of shallow groundwater pollution in Yongcheng City[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 260-268(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0136
    [3]
    肖骢. 变渗透性黏性土弱透水层中砷的迁移转化机制: 以江汉平原为例[D]. 武汉: 中国地质大学(武汉), 2019.

    Xiao C. Migration and transformation mechanism of arsenic in variable-permeability clayey aquitard at Jianghan Plain[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in chinese with English abstract).
    [4]
    江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [5]
    Hebig K H, Zeilfelder S, Ito N, et al. Study of the effects of the chaser in push-pull tracer tests by using temporal moment analysis[J]. Geothermics, 2015, 54: 43-53. doi: 10.1016/j.geothermics.2014.11.004
    [6]
    文章, 李旭. 考虑表皮效应的径向溶质迁移模型以及半解析解[J]. 地质科技通报, 2020, 39(1): 60-66. doi: 10.19509/j.cnki.dzkq.2020.0107

    Wen Z, Li X. Semi-analytical solution for radial solute transport model with skin effect[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 60-66(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0107
    [7]
    Yeh H D, Chen Y J. Determination of skin and aquifer parameters for a slug test with wellbore-skin effect[J]. Journal of Hydrology, 2007, 342(3/4): 283-294.
    [8]
    肖勋, 施文光, 王全荣. 井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响[J]. 地球科学, 2020, 45(4): 1439-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004025.htm

    Xiao X, Shi W G, Wang Q R. Effect of mixing effect and scale-dependent dispersion for radial solute transport near the injection well[J]. Earth Science, 2020, 45(4): 1439-1446(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004025.htm
    [9]
    Huang J, Christ J A, Goltz M N. Analytical solutions for efficient interpretation of single-well push-pull tracer tests[J]. Water Resources Research, 2010, 46(8): LU08538.
    [10]
    Wang Q, Shi W, Zhan H, et al. Models of single-well push-pull test with mixing effect in the wellbore[J]. Water Resources Research, 2018, 54(12): 10155-160171.
    [11]
    De Hoog F R, Knight J, Stokes A. An improved method for numerical inversion of Laplace transforms[J]. SIAM Journal on Scientific and Statistical Computing, 1982, 3(3): 357-366. doi: 10.1137/0903022
    [12]
    Schroth M H, Istok J D. Approximate solution for solute transport during spherical-flow push-pull tests[J]. Groundwater, 2005, 43(2): 280-284. doi: 10.1111/j.1745-6584.2005.0002.x
    [13]
    Chen K, Zhan H, Yang Q. Fractional models simulating non-Fickian behavior in four-stage single-well push-pull tests[J]. Water Resources Research, 2017, 53(11): 9528-9545. doi: 10.1002/2017WR021411
    [14]
    Leij F J, Toride N, Field M S, et al. Solute transport in dual-permeability porous media[J]. Water Resources Research, 2012, 48(4): W04523.
    [15]
    王宝辉, 董荟思, 徐兆明, 等. 多孔介质中污染物溶质迁移模型研究进展[J]. 化工进展, 2010, 29(7): 1338-1368. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201007033.htm

    Wang B H, Dong H S, Xu Z M, et al. Research development in migration model of pollutant solute in porous media[J]. Chemical Industry and Engineering Progress, 2010, 29(7): 1338-1368(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201007033.htm
    [16]
    Van Genuchten M T, Wierenga P. Mass transfer studies in sorbing porous media I: Analytical solutions[J]. Soil Science Society of America Journal, 1976, 40(4): 473-480.
    [17]
    高光耀, 冯绍元, 黄冠华. 饱和非均质土壤中溶质大尺度运移的两区模型模拟[J]. 土壤学报, 2008, 45(3): 398-404. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200803002.htm

    Gao G Y, Feng S Y, Huang G H. Simulation of solute transport at large scale in saturated heterogeneous soil with two-region model[J]. Acta Pedologica Sinica, 2008, 45(3): 398-404(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200803002.htm
    [18]
    Gao G, Zhan H, Feng S, et al. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion[J]. Water Resources Research, 2010, 46(8): W08533.
    [19]
    Zhou R, Zhan H, Chen K. Reactive solute transport in a filled single fracture-matrix system under unilateral and radial flows[J]. Advances in Water Resources, 2017, 104: 183-194.
    [20]
    Li N, Wen Z, Zhan H, et al. The single-well test dilemma: The skin effect and variable-rate pumping perspective[J]. Hydrogeology Journal, 2018, 26(7): 2521-2529.
    [21]
    Chen Y J, Yeh H D, Chang K J. A mathematical solution and analysis of contaminant transport in a radial two-zone confined aquifer[J]. Journal of Contaminant Hydrology, 2012, 138: 75-82.
    [22]
    高光耀, 冯绍元, 马英, 等. 考虑弥散尺度效应的一维反应性溶质运移两区模型及应用[J]. 水利学报, 2011, 42(6): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201106004.htm

    Gao G Y, Feng S Y, Ma Y, et al. One-dimensional two-region model for reactive solute transport with scale-dependent dispersion and its application[J]. Journal of Hydraulic Engineering, 2011, 42(6): 631-640(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201106004.htm
    [23]
    Akter A. Rainwater harvesting: Building a water smart city[M]. Cham, Switzerland: Springer, 2022.
    [24]
    Wang Q, Wang J, Zhan H, et al. New model of reactive transport in a single-well push-pull test with aquitard effect and wellbore storage[J]. Hydrology and Earth System Sciences, 2020, 24(8): 3983-4000.
    [25]
    Li X, Wen Z, Zhu Q, et al. Numerical simulation of single-well push-pull tests in a radial two-zone confined aquifer[J]. Hydrogeology Journal, 2019, 27(7): 2645-2658.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(417) PDF Downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return