Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
ZHAO Yu, CHEN Lixia, LIANG Mengjiao. Temporal probability prediction and meteorological early warning modeling of rainfall-induced landslide based on LSTM_TCN model[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 201-214. doi: 10.19509/j.cnki.dzkq.tb20220657
Citation: ZHAO Yu, CHEN Lixia, LIANG Mengjiao. Temporal probability prediction and meteorological early warning modeling of rainfall-induced landslide based on LSTM_TCN model[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 201-214. doi: 10.19509/j.cnki.dzkq.tb20220657

Temporal probability prediction and meteorological early warning modeling of rainfall-induced landslide based on LSTM_TCN model

doi: 10.19509/j.cnki.dzkq.tb20220657
More Information
  • Objective

    Incomplete landslide timing information can result in inaccuracies in the temporal relationship between landslides and rainfall, consequently affecting the precision of a critical rainfall threshold model.

    Methods

    To address this issue, this study focuses on rainfall-induced landslides in the Wanzhou District of Chongqing from 1995 to 2015. The Henghe Township, lacking historical landslide data, serves as the verification area. We proposed a prediction model for the daily temporal probability of landslide occurrence on a certain day based on long short-term memory (LSTM) and a temporal convolutional network (TCN). This method was used to reconstruct the temporal information of rainfall-induced landslide events by simulating the nonlinear relationship between the duration of landslides and rainfall. After the reconstruction of temporal information, the landslide events were verified and selected and subsequently applied to a reasonable division of the E-D effective rainfall threshold curve to establish the landslide meteorological warning model.

    Results

    The results showed that the average temporal probability of rainfall-induced landslides predicted by the proposed method reached 90.33%, which was higher than that of the ANN (71.17%), LSTM (72.75%), and TCN (86.91%) models. Using temporal probabilities exceeding a 90% threshold, 18 data points, including 42 landslides in the verification area, are expanded to 201. Compared with using solely historical landslide events, the meteorological warning model based on expanded temporal information provides a more reasonable warning classification, and the effective warning rate at the severe warning level is increased by 42.86%.

    Conclusion

    This method can compensate for the shortage of landslide time information in field investigations and provide data support for early meteorological warning systems for rainfall-induced landslides, thus improving the accuracy of early meteorological warning systems.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    殷坤龙, 张桂荣, 龚日祥, 等. 浙江省突发性地质灾害预警预报[M]. 武汉: 中国地质大学出版社, 2005: 42-47.

    YIN K L, ZHANG G R, GONG R X, et al. Early warning and prediction of sudden geological hazards in Zhejiang Province[M]. Wuhan: China University of Geosciences Press, 2005: 42-47. (in Chinese)
    [2]
    陈丽霞, 殷坤龙, 刘长春. 降雨重现期及其用于滑坡概率分析的探讨[J]. 工程地质学报, 2012, 20(5): 745-750. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205014.htm

    CHEN L X, YIN K L, LIU C C. Return period statistics of extreme rainfall and application to landslide probability analysis[J]. Journal of Engineering Geology, 2012, 20(5): 745-750. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205014.htm
    [3]
    LOPEZ S J, CORONA C, STOFFEL M, et al. High-resolution fingerprints of past landsliding and spatially explicit, probabilistic assessment of future reactivations: Aiguettes landslide, southeastern French Alps[J]. Tectonophysics, 2013, 602: 335-369.
    [4]
    ALTHUWAYNEE O F, PRADHAN B, AHMAD N. Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas[J]. Landslides, 2014, 12(5): 861-875.
    [5]
    GUMBEL E J. Multivariate extreme distributions[J]. Bulletin of the International Statistical Institute, 1960, 39(2): 471-475.
    [6]
    HALLINAN A J. A review of the Weibull distribution[J]. Journal of Quality Technology, 1993, 25(2): 85-93. doi: 10.1080/00224065.1993.11979431
    [7]
    徐勇, 连志鹏, 李德营, 等. 鄂西南地区五峰县凉风洞滑坡灾害风险分析[J]. 长江科学院院报, 2016, 33(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201610010.htm

    XU Y, LIAN Z P, LI D Y, et al. Risk analysis of Liangfengdong landslide in Wufeng County, Southwest Hubei Province[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1): 51-56. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201610010.htm
    [8]
    王芳, 殷坤龙, 桂蕾, 等. 不同日降雨工况下万州区滑坡灾害危险性分析[J]. 地质科技通报, 2018, 37(1): 190-195. https://dzkjqb.cug.edu.cn/article/id/9528

    WANG F, YIN K L, GUI L, et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou District[J]. Geological Science and Technology Information, 2018, 37(1): 190-195. (in Chinese with English abstract) https://dzkjqb.cug.edu.cn/article/id/9528
    [9]
    赵海燕, 殷坤龙, 陈丽霞, 等. 基于有效降雨阈值的澧源镇滑坡灾害危险性分析[J]. 地质科技通报, 2020, 39(4): 85-93. doi: 10.19509/j.cnki.dzkq.2020.0431

    ZHAO H Y, YIN K L, CHEN L X, et al. Landslide hazard analysis of Liyuan Town based on effective rainfall threshold[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 85-93. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0431
    [10]
    SEGONI S, PICIULLO L, GARIANO S L. A review of the recent literature on rainfall thresholds for landslide occurrence[J]. Landslides, 2018, 15(8): 1483-1501. doi: 10.1007/s10346-018-0966-4
    [11]
    CAINE N. The rainfall intensity: Duration control of shallow landslides and debris flows[J]. Geografiska Annaler(Series A, Physical Geography), 1980, 62(1/2): 23-27. doi: 10.2307/520449
    [12]
    GUZZETⅡ F, CROSTA G, DETTI R, et al. Stone: A computer program for the three-dimensional simulation for rock-falls[J]. Computers and Geosciences, 2002, 28(9): 1079-1093. doi: 10.1016/S0098-3004(02)00025-0
    [13]
    吴益平, 张秋霞, 唐辉明, 等. 基于有效降雨强度的滑坡灾害危险性预警[J]. 地球科学, 2014, 39(7): 889-895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407011.htm

    WU Y P, ZHANG Q X, TANG H M, et al. Landslide hazard warning based on effective rainfall intensity[J]. Earth Science, 2014, 39(7): 889-895. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407011.htm
    [14]
    GUZZETTI F, PERUCCACCI S, ROSSI M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe[J]. Meteorology and Atmospheric Physics, 2007, 98(3/4): 239-267.
    [15]
    HONG Y, HIURA H, SHINO K, et al. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan[J]. Landslides, 2005, 3(2): 97-105.
    [16]
    MATHEW J, BABU D G, KUNDU S, et al. Integrating intensity-duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India[J]. Landslides, 2013, 11(4): 575-588.
    [17]
    刘谢攀, 殷坤龙, 肖常贵, 等. 基于I-D-R阈值模型的滑坡气象预警[J/OL]. 地球科学, 2022, 1-15. https://doi.org/10.3799/dqkx.2022.233

    LIU X P, YIN K L, XIAO C G, et al. Meteorological early warning of landslide based on I-D-R threshold model[J/OL]. Earth Science, 2022, 1-15. https://doi.org/10.3799/dqkx.2022.233. (in Chinese with English abstract)
    [18]
    CROZIER M J. Landslides: Causes, consequences & environment[M]. London: Croom Helm, 1986.
    [19]
    黄发明, 陈佳武, 范宣梅, 等. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模[J/OL]. 地球科学, 2021, 1-25. https://doi.org/10.3799/dqkx.2021.164

    HUANG F M, CHEN J W, FAN X M, et al. Logistic regression fitting of rainfal-induced landslide occurrence probability and continuous landslide hazard prediction modelling[J/OL]. Earth Science, 2021, 1-25. https://doi.org/10.3799/dqkx.2021.164. (in Chinese with English abstract)
    [20]
    黄发明, 曹中山, 姚池, 等. 基于决策树和有效降雨强度的区域降雨型滑坡危险性预警建模[J]. 浙江大学学报(工学版), 2021, 55(3): 472-482.

    HUANG F M, CAO Z S, YAO C, et al. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(3): 472-482. (in Chinese with English abstract)
    [21]
    COROMINAS J, MOYA J. A review of assessing landslide frequency for hazard zoning purposes[J]. Engineering Geology, 2008, 102(3/4): 193-213.
    [22]
    黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和不同训练测试集比例的滑坡易发性预测不确定性[J]. 岩石力学与工程学报, 2021, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm

    HUANG F M, CHEN J W, TANG Z P, et al. Uncertainties of landslide susceptibility prediction due to different spatial resolutions and different proportions of training and testing datasets[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1155-1169. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
    [23]
    YAO W, ZENG Z, LIAN C, et al. Training enhanced reservoir computing predictor for landslide displacement[J]. Engineering Geology, 2015, 188: 101-109. doi: 10.1016/j.enggeo.2014.11.008
    [24]
    黄发明, 李金凤, 王俊宇, 等. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律[J]. 地质科技通报, 2022, 41(2): 44-59. doi: 10.19509/j.cnki.dzkq.2022.0010

    HUANG F M, LI J F, WANG J Y, et al. Modelling rules of landslides usceptibility prediction considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 44-59. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0010
    [25]
    FALASCHI F, GIACOMELLI F, FEDERICI P R, et al. Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy[J]. Natural Hazards, 2009, 50(3): 551-569. doi: 10.1007/s11069-009-9356-5
    [26]
    PARK S, CHOI C, KIM B, et al. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea[J]. Environmental Earth Sciences, 2013, 68(5): 1443-1464. doi: 10.1007/s12665-012-1842-5
    [27]
    田乃满, 兰恒星, 伍宇明, 等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12): 2304-2316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202012004.htm

    TIAN N M, LAN H X, WU Y M, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304-2316. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202012004.htm
    [28]
    YAO J, QIN S, QIAO S, et al. Application of a two-step sampling strategy based on deep neural network for landslide susceptibility mapping[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 1-20.
    [29]
    吴琪, 周创兵, 黄发明, 等. 基于双重注意力机制的滑坡识别方法优化[J]. 地质科技通报, 2022, 41(2): 246-253. doi: 10.19509/j.cnki.dzkq.2022.0053

    WU Q, ZHOU C B, HUANG F M, et al. Optimization of the landslide identification method based on adual attention mechanism[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 246-253. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0053
    [30]
    HUANG F, ZHANG J, ZHOU C, et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction[J]. Landslides, 2020, 17(1): 217-229. doi: 10.1007/s10346-019-01274-9
    [31]
    ZHU L, HUANG L, FAN L, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors, 2020, 20(6): 1576-1587. doi: 10.3390/s20061576
    [32]
    黄发明, 陈彬, 毛达雄, 等. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性[J]. 地球科学, 2022, 48(5): 1696-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm

    HUANG F M, CHEN B, MAO D X, et al. Landslide susceptibility prediction modeling and interpretability based on self-screening deep learning model[J]. Earth Science, 2022, 48(5): 1696-1710. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm
    [33]
    QIN S, JIAO J, WANG S. A nonlinear dynamical model of landslide evolution[J]. Geomorphology, 2002, 43(1): 77-85.
    [34]
    YANG B B, YIN K L, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694. doi: 10.1007/s10346-018-01127-x
    [35]
    BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J/OL]. 2018. http:doi.org/10.48550/arXiv.1803.01271
    [36]
    BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. doi: 10.1109/72.279181
    [37]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [38]
    KOLEN J K, KREMER S C. Gradient flow in recurrent nets: The difficulty of learning long term dependencies[M]. Hyderaba, India: Wiley-IEEE Press, 2001.
    [39]
    Anon. Landslides: Causes, consequences and environment[M]. London: Routledge Kegan and Paul, 1986: 185-189.
    [40]
    MERGHADI A, ABDERRAHMANE B, BUI D T. Landslide susceptibility assessment at Mila Basin(Algeria): A comparative assessment of prediction capability of advanced machine learning methods[J]. ISPRS International Journal of Geo-information, 2018, 7(7): 268-298. doi: 10.3390/ijgi7070268
    [41]
    罗路广, 裴向军, 黄润秋, 等. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报, 2021, 29(2): 526-535. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102022.htm

    LUO L G, PEI X J, HUANG R Q, et al. Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology, 2021, 29(2): 526-535. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102022.htm
    [42]
    SHAO H, JIANG H, ZHAO H, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. doi: 10.1016/j.ymssp.2017.03.034
    [43]
    YANG B, LEI Y, JIA F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 692-706. doi: 10.1016/j.ymssp.2018.12.051
    [44]
    林巍, 李远耀, 徐勇, 等. 湖南慈利县滑坡灾害的临界降雨量阈值研究[J]. 长江科学院院报, 2020, 37(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202002011.htm

    LIN W, LI Y Y, XU Y, et al. Rainfall thresholds of rainfall-triggered landslides in Cili County, Hunan Province[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(2): 48-54. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202002011.htm
    [45]
    PERUCCACCI S, BRUNETTI M T, LUCIANI S, et al. Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy[J]. Geomorphology, 2012, 139/140: 79-90.
    [46]
    苏晨旭, 田钦, 刘本朝, 等. 江西省龙南县滑坡易发性评价[J]. 科学技术与工程, 2019, 19(17): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201917012.htm

    SUN C X, TIAN Q, LIU B C, et al. Regional landslide susceptibility assessment for Longnan County in Jiangxi Province[J]. Science Technology and Engineering, 2019, 19(17): 91-99. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201917012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(296) PDF Downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return