Volume 42 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Li Lulu, Li Muyang, Zhou Zhichao, Zhang Qiulan, Cui Yali, Shao Jingli. Assessment of fractures geometries and seepage characteristics based on statistical homogeneous zone method[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 288-298. doi: 10.19509/j.cnki.dzkq.tb20220677
Citation: Li Lulu, Li Muyang, Zhou Zhichao, Zhang Qiulan, Cui Yali, Shao Jingli. Assessment of fractures geometries and seepage characteristics based on statistical homogeneous zone method[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 288-298. doi: 10.19509/j.cnki.dzkq.tb20220677

Assessment of fractures geometries and seepage characteristics based on statistical homogeneous zone method

doi: 10.19509/j.cnki.dzkq.tb20220677
  • Received Date: 05 Dec 2022
  • Accepted Date: 13 Apr 2023
  • Rev Recd Date: 12 Apr 2023
  • Objective

    Comprehensive analysis of fracture geometries and seepage characteristics is one of the prominent components in site suitability assessment of high-level radioactive waste (HLW) disposal repositories.

    Methods

    To provide a sufficient basis for the construction of the Xinchang underground research laboratory (URL) site in the Beishan preselected area of the HLW disposal repository in China, this paper analyzed the development and distribution of fractures and the seepage characteristics in fractured granite. Based on the borehole tests of BS32, BS36 and BS39 carried out in the middle of the Xinchang site and the field investigation of the surrounding fractures, the orientations and linear density of fractures were used to quantitatively classify the homogeneous zones of the BS32, BS36 and BS39 boreholes. Supplemented by the theory of the hydraulic conductivity tensor, the hydraulic conductivities of fractured rock and the principal directions of fluid seepage in fractured rock with different burial depths were obtained.

    Results

    The results show that four groups of dominant fractures are developed around BS32, BS36 and BS39 at the Xinchang URL site, with orientations of 279°∠79°, 98°∠76°, 227°∠79° and 36°∠76°, which are especially dominant in the EW and NNE directions. The fractures are mainly shear-stress formed with steep dips (>60°), accompanied by a few tensile fractures, and the fractures are normally distributed. Compared with the field hydraulic test results, the overall comprehensive hydraulic conductivities of the boreholes are in the range of 10-13-10-9 m/s. The main seepage directions are NNE, nearly EW and SE, where NNE and nearly EW are the dominant seepage channels of the fractured rock mass, with larger main permeability tensor values. Two nearly E-W-trending F6 and F7 faults and their corresponding NNE-E-trending secondary faults play a macrocontrolling role in fracture development at the Xinchang site. The permeability of fractured rock is mainly affected by the fracture spacing and aperture, demonstrating a great anisotropy.

    Conclusion

    The results can provide necessary data support for the construction of disposal repositories and the numerical simulation of nuclide migration at the Xinchang URL site. In addition, the presented research idea could provide an alternative and practical method for effectively studying the properties of deep fractured rock masses with deep geological disposal of HLW.

     

  • loading
  • [1]
    王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10): 2072-2082. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm

    Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10): 2072-2082(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201910036.htm
    [2]
    Huang F, Yao C, Yang J, et al. Connectivity evaluation of fracture networks considering the correlation between trace length and aperture[J]. Applied Mathematical Modelling, 2020, 88: 870-887. doi: 10.1016/j.apm.2020.07.011
    [3]
    Huang F, Yao C, Yang J, et al. Effects of fracture parameters and roughness on heat-flow coupling in rock mass with two-dimensional fracture networks[J]. Energy Science & Engineering, 2021, 9(8): 1216-1231.
    [4]
    Li L L, Zhang Q L, Zhou Z C, et al. Groundwater circulation patterns in bedrock aquifers from a pre-selected area of high-level radioactive waste repository based on two-dimensional numerical simulation[J]. Journal of Hydrology, 2022, 610: 127849. doi: 10.1016/j.jhydrol.2022.127849
    [5]
    Shanley R J, Mahtab M A. Delineation and analysis of clusters in orientation data[J]. Mathematical Geology, 1976, 8(1): 9-23. doi: 10.1007/BF01039681
    [6]
    Gaziev E G, Tiden E N. Probabilistic approach to the study of jointing in rock masses[J]. Bulletin of Engineering Geology and the Environment, 1979, 20(1): 178-181.
    [7]
    Ma G W, Xu Z H, Zhang W, et al. An enriched K-means clustering method for grouping fractures with meliorated initial centers[J]. Arabian Journal of Geosciences, 2014, 8(4): 1881-1893.
    [8]
    宋盛渊, 王清, 陈剑平, 等. 岩体结构面的多参数优势分组方法研究[J]. 岩土力学, 2015, 36(7): 2041-2048. doi: 10.16285/j.rsm.2015.07.028

    Song S Y, Wang Q, Chen J P, et al. A method for multivariate parameter dominant partitioning of discontinuities of rock masses[J]. Rock and Soil Mechanics, 2015, 36(7): 2041-2048(in Chinese with English abstract). doi: 10.16285/j.rsm.2015.07.028
    [9]
    李宁, 王李管, 贾明涛, 等. 改进遗传算法和支持向量机的岩体结构面聚类分析[J]. 岩土力学, 2014, 35(增刊2): 405-411. doi: 10.16285/j.rsm.2014.s2.014

    Li N, Wang L G, Jia M T, et al. Application of improved genetic algorithm and support vector machine to clustering analysis of rock mass structural plane[J]. Rock and Soil Mechanics, 2014, 35(S2): 405-411(in Chinese with English abstract). doi: 10.16285/j.rsm.2014.s2.014
    [10]
    Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(3): 183-197.
    [11]
    Kulatilake P H S W, Wu T H. Estimation of mean trace length of discontinuities[J]. Rock Mechanics and Rock Engineering, 1984, 17(4): 215-232. doi: 10.1007/BF01032335
    [12]
    Zhang L, Einstein H H. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering, 1998, 31(4): 217-235. doi: 10.1007/s006030050022
    [13]
    Zhang Q, Wang Q, Chen J, et al. Estimation of mean trace length by setting scanlines in rectangular sampling window[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 84(2): 74-79.
    [14]
    Miller S M. A statistical method to evaluate homogeneity of structural populations[J]. Journal of International Association for Mathematical Geology, 1983, 15(2): 317-328. doi: 10.1007/BF01036073
    [15]
    Kulatilake P H S W, Chen J, Teng J, et al. Discontinuity geometry characterization in a tunnel close to the proposed permanent shiplock area of the Three Gorges Dam Site in China[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 33(3): 255-277.
    [16]
    高敬, 杨春和, 王贵宾. 甘肃北山岩体结构均质区划分方法的探讨[J]. 岩土力学, 2010, 31(2): 588-592. doi: 10.3969/j.issn.1000-7598.2010.02.042

    Gao J, Yang C H, Wang G B. Discussion on zoning method of structural homogeneity of rock mass in Beishan of Gansu Province[J]. Rock and Soil Mechanics, 2010, 31(2): 588-592(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.02.042
    [17]
    宋盛渊, 王清, 陈剑平, 等. 一种基于裂隙间距的岩体结构统计均质区划分方法[J]. 东北大学学报: 自然科学版, 2015, 36(8): 1188-1192. doi: 10.3969/j.issn.1005-3026.2015.08.027

    Song S Y, Wang Q, Chen J P, et al. A method of identifying structural homogeneity of rock mass based on fracture spacing[J]. Journal of Northeastern University: Natural Science Edition, 2015, 36(8): 1188-1192(in Chinese with English abstract). doi: 10.3969/j.issn.1005-3026.2015.08.027
    [18]
    魏翔, 杨春和, 王贵宾, 等. 钻孔岩体结构均质区划分方法研究[J]. 长江科学院院报, 2017, 34(11): 72-76, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201711017.htm

    Wei X, Yang C H, Wang G B, et al. Dividing structural homogeneity of rock mass by using boreholes[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(11): 72-76, 83(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201711017.htm
    [19]
    Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research, 1969, 5(6): 1273-1289. doi: 10.1029/WR005i006p01273
    [20]
    Long J C S, Remer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3): 645-658. doi: 10.1029/WR018i003p00645
    [21]
    Oda M, Takemura T, Aoki T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials, 2002, 34(6): 313-331. doi: 10.1016/S0167-6636(02)00115-1
    [22]
    田开铭, 万力. 各向异性裂隙介质渗透特性的研究与评价[M]. 北京: 学苑出版社, 1989.

    Tian K M, Wan L. Research and evaluation on permeability of anisotropic fractured media[M]. Beijing: Academy Press, 1989(in Chinese).
    [23]
    Wang J, Chen L, Su R, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 411-435.
    [24]
    董艳辉, 符韵梅, 王礼恒, 等. 甘肃北山-河西走廊-祁连山区域地下水循环模式[J]. 地质科技通报, 2022, 41(1): 79-89. doi: 10.19509/j.cnki.dzkq.2022.0012

    Dong Y H, Fu Y M, Wang L H, et al. Rgional groundwater flow pattern in Beishan, Hexi Corridor and Qilian Mountain[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 79-89(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0012
    [25]
    苏锐, 郭永海, 季瑞利, 等. 甘肃北山新场向阳山预选地段深部环境水文地质特征研究[R]. 北京: 核工业北京地质研究院, 2010.

    Su R, Guo Y H, Ji R L, et al. Hydrogeological characterization of deep environment at Xinchang-Xiangyangshan preselected area in Gansu Beishan region for China's high level radioactive waste disposal[R]. Beijing: Beijing Research Institute of Uranium Geology, 2010(in Chinese).
    [26]
    王超, 王川婴, 王益腾, 等. 基于孔壁光学图像的岩石孔隙结构识别与分析方法研究[J]. 岩石力学与工程学报, 2021, 40(9): 1894-1901. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202109015.htm

    Wang C, Wang C Y, Wang Y T, et al. Research on identification and analysis method of rock pore structure based on optical images of borehole walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1894-1901(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202109015.htm
    [27]
    朱恒银, 王川婴, 王强. 钻孔摄像技术在地质勘探中的应用研究[J]. 探矿工程: 岩土钻掘工程, 2013, 40(增刊1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-META202301021.htm

    Zhu H Y, Wang C Y, Wang Q. Application of borehole image technology in geological exploration[J]. Exploration Engineering: Rock & Soil Drilling and Junneling, 2013, 40(S1): 69-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-META202301021.htm
    [28]
    葛云峰, 钟鹏, 唐辉明, 等. 基于钻孔图像的岩体结构面几何信息智能测量[J]. 岩土力学, 2019, 40(11): 4467-4476. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm

    Ge Y F, Zhong P, Tang H M, et al. Intelligent measurement on geometric information of rock discontinuities based on borehole image[J]. Rock and Soil Mechanics, 2019, 40(11): 4467-4476(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm
    [29]
    李亚伟, 郭哲江. 候选场址岩体工程质量评价研究[R]. 北京: 核工业北京地质研究院, 2017.

    Li Y W, Guo Z J. Rock mass quality evaluation of pre-selected areas for underground research laboratory[R]. Beijing: Beijing Research Institute of Uranium Geology, 2017(in Chinese).
    [30]
    张明, 季瑞利, 李杰彪. 钻孔水文地质现场试验研究[R]. 北京: 核工业北京地质研究院, 2018.

    Zhang M, Ji R L, Li J B. Operation of borehole hydraulic tests and data interpretation[R]. Beijing: Beijing Research Institute of Uranium Geology, 2018(in Chinese).
    [31]
    杨春和, 包宏涛, 王贵宾, 等. 岩体节理平均迹长和迹线中点面密度估计[J]. 岩石力学与工程学报, 2006, 25(12): 2475-2480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612017.htm

    Yang C H, Bao H T, Wang G B, et al. Estimation of mean trace length and trace midpoint density of rock mass joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2475-2480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612017.htm
    [32]
    Martin M W, Tannant D D. A technique for identifying structural domain boundaries at the EKATI Diamond Mine[J]. Engineering Geology, 2004, 74(3/4): 247-264.
    [33]
    周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004.

    Zhou Z F, Wang J G. Dynamics of fluids in fractured media[M]. Beijing: China Water Power Press, 2004(in Chinese).
    [34]
    胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126. doi: 10.19509/j.cnki.dzkq.2022.0029

    Hu C, Chen G, Cao M X, et al. A case study on water sealing efficiency of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(394) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return