Citation: | Wang Xusheng, Xie Yonghua, Chen Chongxi. Sectional 2D numerical modelling method for steady state well-flow in an unconfined aquifer[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 27-36. doi: 10.19509/j.cnki.dzkq.tb20230024 |
Both the classical Dupuit model and the modified Dupuit model including infiltration are influenced by Dupuit's assumption and have potential systematic errors. Building a numerical model of well flow in an unconfined aquifer by characterizing the three-dimensional or axisymmetric two-dimensional (2D) flow is an essential approach to verify the performance of Dupuit-type models.
In this study, a 2D numerical model is proposed for the steady state well-flow in an unconfined aquifer, in which the control equation of seepage in the cylindrical coordinates is transformed equivalently to the Cartesian coordinates through parameter transformation, and the sectional 2D modelling is implemented via the MODFLOW finite-difference grid of cubic blocks. In the numeric model, the water level in the pumping well is a given condition, the flux across the seepage face is estimated by difference equation according to Darcy's law, the phreatic surface is identified by the treatment of dry and wet cells in MODFLOW, and the pumping rate is determined from the water debug calculation.
Fine grids are constructed innumerical models of typical cases to obtain high-precision results, in which the relative error of the backwards estimated pumping rate is no more than 0.2%. This numerical model is used to check the Dupuit-type well-flow models. As indicated, the groundwater level estimated from the analytical formulas generally agrees well with the numerical modelling results, except that near the well, where the analytical solution underestimates the groundwater level due to ignoring the waterjump and the errors depend on the anisotropic permeability of the aquifer. When infiltration exists, the flow in the vicinity of watershed does not follow Dupuit's assumption. However, the estimated groundwater level on the watershed by modified Dupuit well-flow equation has a low level of relative error, which is less than 1%.
This numerical method is simple and practical however it is also influenced by limitations in MODFLOW.
[1] |
Dupuit A J E J. Etudes theoretiques et pratiques sur le mouvement des eaux[M]. Paris: Dunod, 1863.
|
[2] |
Каменский Г И. Основы дина-мики подземных вод[M]. Москва: Госгеолиздат, 1943(in Russian).
|
[3] |
Haitjema H M. Analytic element modeling of groundwater flow[M]. San Diego: Academic Press, Inc., 1995.
|
[4] |
陈崇希. Dupuit模型的改进: 具入渗补给[J]. 水文地质工程地质, 2020, 47(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
Chen C X. Improvement of Dupuit model: With infiltration recharge[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 1-4(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
|
[5] |
Чарный И A. Строгое доказателъство формулм дюпюидля безнапорной филътрации с промеҗутком высачнвания[J]. Докл. АН СССР, 1951, 79(6): 937-948. https://www.cnki.com.cn/Article/CJFDTOTAL-NWYJ202105015.htm
|
[6] |
陈崇希, 林敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999.
Chen C X, Lin M. Groundwater hydraulics[M]. Wuhan: China University of Geosciences Press, 1999(in Chinese).
|
[7] |
Boulton N S. The flow pattern near a gravity well in a uniform water-bearing medium[J]. Journal of the ICE, 1951, 36(10): 534-550.
|
[8] |
张有龄. 河床地下水运动的供水理论分析[M]. 北京: 科学出版社, 1958.
Zhang Y L. Theoretical analysis on water yield from groundwater flow beneath riverbed[M]. Beijing: Science Press, 1958(in Chinese).
|
[9] |
Taylor G S, Luthin J N. Computer methods for transient analysis of water-table aquifers[J]. Water Resources Research, 1969, 5(1): 144-152. doi: 10.1029/WR005i001p00144
|
[10] |
Neuman S P, Witherspoon P A. Finite element method of analyzing steady seepage with a free surface[J]. Water Resources Research, 1970, 6(3): 889-897. doi: 10.1029/WR006i003p00889
|
[11] |
McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground-water flow model[R]. Denver: Techniques of Water-Resources Investigations of the U.S. Geological Survey, Chapter A1, Book 6, 1988.
|
[12] |
王旭升, 万力. 地下水运动方程[M]. 北京: 地质出版社, 2011.
Wang X S, Wan L. Equations of groundwater movements[M]. Beijing: Geological Publishing House, 2011(in Chinese).
|
[13] |
陈崇希, 林敏, 成建梅. 地下水动力学[M]. 北京: 地质出版社, 2011.
Chen C X, Lin M, Cheng J M. Groundwater hydraulics[M]. Beijing: Geological Publishing House, 2011(in Chinese).
|
[14] |
Samani N, Kompani-Zarea M, Barry D. MODFLOW equipped with a new method for the accurate simulation of axisymmetric flow[J]. Advances in Water Resources, 2004, 27(1): 31-45. doi: 10.1016/j.advwatres.2003.09.005
|
[15] |
Langevin C D. Modeling axisymmetric flow and transport[J]. Groundwater, 2008, 46(4): 579-590. doi: 10.1111/j.1745-6584.2008.00445.x
|
[16] |
Louwyck A, Vandenbohede A, Bakker M, et al. MODFLOW procedure to simulate axisymmetric flow in radially heterogeneous and layered aquifer systems[J]. Hydrogeology Journal, 2014, 22(5): 1217-1226. doi: 10.1007/s10040-014-1150-0
|
[17] |
董佩, 王旭升. MODFLOW模拟自由面渗流的应用与讨论[J]. 工程勘察, 2009(7): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200907009.htm
Dong P, Wang X S. Application and discussion of MODFLOW's simulation to the seepage of free surface[J]. Journal of Geotechnical Investigation & Surveying, 2009(7): 27-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200907009.htm
|
[18] |
Hill M C. Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving, ground-water flow equations[R]. Water-Resources Investigations Report 90-4048, Denver: U.S. Geological Survey, 1990.
|
[19] |
Pollock D W. User's Guide for MODPATH/MODPATH-PLOT, Version 3: A Particle tracking post-processing package for MODFLOW, the U.S. Geological survey finite difference groundwater flow model[R]. Open-file report 94-464, Denver: U.S. Geological Survey, 1994.
|
[20] |
陈崇希, 唐仲华, 胡立堂. 地下水流数值模拟理论方法及模型设计[M]. 北京: 地质出版社, 2014.
Chen C X, Tang Z H, Hu L T. Theory, method and model design for numerical simulation of groundwater flow[M]. Beijing: Geological Publishing House, 2014 (in Chinese).
|
[21] |
成建梅, 罗一鸣. 岩溶多重介质地下水模拟技术及应用进展[J]. 地质科技通报, 2022, 41(5): 220-229. doi: 10.19509/j.cnki.dzkq.2022.0220
Chen J M, Luo Y M. Overview of groundwater modeling technology and its application in karst areas with multiple-void media[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 220-229(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0220
|
[22] |
郑小康, 杨志兵. 岩溶含水层饱和-非饱和流动与污染物运移数值模拟[J]. 地质科技通报, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211
Zheng X K, Yang Z B. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0211
|
[23] |
Wen Z, Liu Z T, Jin M G, et al. Numerical modeling of Forchheimer flow to a pumping well in a confined aquifer using the strong-form mesh-free method[J]. Hydrogeology Journal, 2014, 22(5): 1207-1215. doi: 10.1007/s10040-014-1136-y
|
[24] |
Wang Q R, Zhan H B, Tang Z H, et al. Forchheimer flow to a well-considering time-dependent critical radius[J]. Hydrology and Earth System Sciences, 2014, 18(6): 2437-2448. doi: 10.5194/hess-18-2437-2014
|
[25] |
陈崇希, 林敏, 叶善士, 等. 地下水混合井流的理论及应用[M]. 武汉: 中国地质大学出版社, 1998.
Chen C X, Lin M, Ye S S, et al. Theory of multi-layer mixed well flow and its application[M]. Wuhan: China University of Geosciences Press, 1998(in Chinese).
|