Citation: | Zhang Hui, Wang Guangcai, Shi Zheming, Zhou Pengpeng. Advances in estimation of aquifer hydrogeological parameters based on microfluctuations of groundwater level[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 138-146. doi: 10.19509/j.cnki.dzkq.tb20230029 |
In order to understand groundwater systems, it is useful to study the changing characteristics and mechanisms of hydrogeological parameters with time. Responses of groundwater level microfluctuations to natural periodic loadings, such as earth tides and barometric pressure, serve as low-cost and effective investigation technique to calculate aquifer hydrogeological parameters.
In this paper, we systematically reviewed theoretical methods of hydrogeological parameters estimation based on groundwater level response to earth tides, barometric pressure, and their combination. We presented earthquake-related and mining-related parameters change with time in well-aquifer system. The barometric pressure response method also applies to the assessment of aquifer vulnerability.
We conclude that studying the microfluctuation of groundwater level may provide insight into the interaction among hydrogeological processes, tectonic activities, and artificial influences in the shallow crust at spatial and temporal scales.
This paper also proposes three scientific problems to be solved in the future: the application of skin and wellbore storage effects, the improvement of computation accuracy of hydrogeological parameters by combining multiple methods for determining basic geological parameters, and the investigation of other artificial influences such as groundwater overdraft and subsidence to regional aquifer systems.
[1] |
汪成民. 地下水微动态研究[M]. 地震出版社, 1988.
Wang C M. Study on the groundwater micro-fluctuation[M]. Seismological Press, 1988 (in Chinese).
|
[2] |
梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199-219. doi: 10.19509/j.cnki.dzkq.2022.0199
Liang Y P, Shen H Y, Gao X B. Review of research progress of karst groundwater in northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 199-219 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0199
|
[3] |
车用太. 井孔水位的微动态特征综述[J]. 水文地质工程地质, 1984, 11(4): 18-22, 42. doi: 10.16030/j.cnki.issn.1000-3665.1984.04.003
Che Y T. A review of the micro-fluctuation characteristics of well bore water levels[J]. Hydrogeology and Engineering Geology, 1984, 11(4): 18-22, 42 (in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.1984.04.003
|
[4] |
张淑亮, 李宏伟, 吕芳, 等. 基于数值模拟与含水层垂向应力反演的静乐井水位异常分析[J]. 震灾防御技术, 2019, 14(4): 854-868. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201904017.htm
Zhang S L, Li H W, Lü F, et al. Analysis of the Jingle well water-level anomaly based on numerical simulation and aquifer stress inversion[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 854-868 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201904017.htm
|
[5] |
张艳. 承压含水层井水位对循环荷载响应的水动力过程研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020.
Zhang Y. Research on hydrodynamic process of response of well water level of confined aquifer to cyclic loading[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020 (in Chinese with English abstract).
|
[6] |
Shi Z M, Wang C Y, Yan R. Frequency-dependent groundwater response to earthquakes in carbonate aquifer[J]. Journal of Hydrology, 2021, Part D(603): 127153.
|
[7] |
Hsieh P A, Bredehoeft J D, Farr J M. Determination of aquifer transmissivity from Earth tide analysis[J]. Water Resources Research, 1987, 23(10): 1824-1832. doi: 10.1029/WR023i010p01824
|
[8] |
Roeloffs E. Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J]. Advances in Geophysics, 1996, 37(1): 135-195.
|
[9] |
Bredehoeft J D. Response of well-aquifer systems to Earth tides[J]. Journal of Geophysical Research, 1967, 72(12): 3075-3087 doi: 10.1029/JZ072i012p03075
|
[10] |
Elkhoury J E, Brodsky E E, Agnew D C. Seismic waves increase permeability[J]. Nature, 2006, 441(29): 1135-1138.
|
[11] |
Rojstaczer S. Determination of fluid flow properties from the response of water levels in wells to atmospheric loading[J]. Water Resources Research, 1988, 24(11): 1927-1938. doi: 10.1029/WR024i011p01927
|
[12] |
Cutillo P A, Bredehoeft J D. Estimating aquifer properties from the water level response to earth tides[J]. Ground Water, 2011, 49(4): 600-610. doi: 10.1111/j.1745-6584.2010.00778.x
|
[13] |
Acworth R I, Halloran L J S, Rau G C, et al. An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides[J]. Geophysical Research Letters, 2016, 43(22): 11671-11678.
|
[14] |
刘贺, 罗勇, 雷坤超, 等. 北京新航城地区地面沉降演化规律及多源监测方法对比研究[J]. 地质科技通报, 2023, 42(1): 398-406. doi: 10.19509/j.cnki.dzkq.tb20210456
Liu H, Luo Y, Lei K C, et al. Evolution of land subsidence and comparative study on multi-source monitoring methods in New Airlines City of Beijing[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 398-406 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20210456
|
[15] |
Adhikary D, Guo H. Modelling of longwall mining-induced strata permeability change[J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 345-359. doi: 10.1007/s00603-014-0551-7
|
[16] |
Zhang Y, Manga M, Fu L Y. Changes of hydraulic transmissivity orientation induced by tele-seismic waves[J]. Water Resources Research, 2022, 58(11): e2022WR033272. doi: 10.1029/2022WR033272
|
[17] |
Kaleris V K, Ziogas A I. Using electrical resistivity logs and short duration pumping tests to estimate hydraulic conductivity profiles[J]. Journal of Hydrology, 2020, 590(6): 125277.
|
[18] |
Sun X L, Xiang Y, Shi Z M, et al. Sensitivity of the response of well-aquifer systems to different periodic loadings: A comparison of two wells in Huize, China[J]. Journal of Hydrology, 2019, 572: 121-130. doi: 10.1016/j.jhydrol.2019.02.029
|
[19] |
张丽华, 潘保芝, 单刚义. 岩心样品孔隙度渗透率实验研究进展[J]. 地球物理学进展, 2018, 33(2): 777-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802043.htm
Zhang L H, Pan B Z, Shan G Y. Progress in experimental research on porosity and permeability of core samples[J]. Progress in Geophysics, 2018, 33(2): 777-782 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201802043.htm
|
[20] |
杨坤, 王付勇, 曾繁超, 等. 基于数字岩心分形特征的渗透率预测方法[J]. 吉林大学学报: 地球科学版, 2020, 50(4): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004007.htm
Yang K, Wang F Y, Zen F C, et al. Permeability prediction based on fractal characteristics of digital rock[J]. Journal of Jilin University: Earth Science Edition, 2020, 50(4): 1003-1011(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004007.htm
|
[21] |
Allègre V, Brodsky E E, Xue L, et al. Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests[J]. Water Resources Research, 2016, 52(4): 3113-3126. doi: 10.1002/2015WR017346
|
[22] |
David K, Timms W A, Barbour S L, et al. Tracking changes in the specific storage of overburden rock during longwall coal mining[J]. Journal of Hydrology, 2017, 553: 304-320. doi: 10.1016/j.jhydrol.2017.07.057
|
[23] |
Zhang S C, Shi Z M, Wang G C. Comparison of aquifer parameters inferred from water level changes induced by slug test, earth tide and earthquake: A case study in the three Gorges area[J]. Journal of Hydrology, 2019, 579: 124169. doi: 10.1016/j.jhydrol.2019.124169
|
[24] |
张卉. 井-含水层系统对周期性荷载的响应及受地震影响的研究[D]. 北京: 中国地质大学(北京), 2021.
Zhang H. The response of well-aquifer system to periodic loadings and earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2021 (in Chinese with English abstract).
|
[25] |
Doan M L, Brodsky E E, Prioul R, et al. Tidal analysis of borehole pressure: A tutorial[R]. Cambridge: Schlumberger-Doll Research Report, 2006.
|
[26] |
Mcmillan T C, Rau G C, Timms W A, et al. Utilizing the impact of Earth and atmospheric tides on groundwater systems: A review reveals the future potential[J]. Reviews of Geophysics, 2019, 57(2): 218-315.
|
[27] |
Chapman S, Malin S R C. Atmospheric tides, thermal and gravitational: Nomenclature, notation and new results[J]. Journal of the Atmospheric Sciences, 1970, 27(5): 707-710. doi: 10.1175/1520-0469(1970)027<0707:ATTAGN>2.0.CO;2
|
[28] |
Jacob C E. On the flow of water in an elastic artesian aquifer[J]. Transactions American Geophysical Union, 1940, 21(2): 574-586. doi: 10.1029/TR021i002p00574
|
[29] |
Acworth R I, Rau G C, Halloran L, et al. Vertical groundwater storage properties and changes in confinement determined using hydraulic head response to atmospheric tides[J]. Water Resources Research, 2017, 53(4): 2983-2997. doi: 10.1002/2016WR020311
|
[30] |
Rojstaczer S, Agnew D C. The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B9): 12403-12411. doi: 10.1029/JB094iB09p12403
|
[31] |
史浙明. 地下水位同震响应特征及机理研究[D]. 北京: 中国地质大学(北京), 2015.
Shi Z M. Characteristic and mechanism of co-seismic hydrological response induced by earthquakes[D]. Beijing: China University of Geosciences (Beijing), 2015 (in Chinese with English abstract).
|
[32] |
Rasmussen T C, Crawford L A. Identifying and removing barometric pressure effects in confined and unconfined aquifers[J]. Ground Water, 1997, 35(3): 502-511. doi: 10.1111/j.1745-6584.1997.tb00111.x
|
[33] |
Butler J J, Jin W, Mohammed G A, et al. New insights from well responses to fluctuations in barometric pressure[J]. Ground Water, 2011, 49 (4): 525-533. doi: 10.1111/j.1745-6584.2010.00768.x
|
[34] |
Hussein M, Odling N E, Clark R A. Borehole water level response to Barometric pressure as an indicator of aquifer vulnerability[J]. Water Resources Research, 2013, 49(10): 7102-7119. doi: 10.1002/2013WR014134
|
[35] |
Rau G C, Cuthbert M O, Acworth R I, et al. Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation[J]. Hydrology and Earth System Sciences, 2020, 24(12): 6033-6046. doi: 10.5194/hess-24-6033-2020
|
[36] |
何冠儒, 史浙明. 地下水对气压和固体潮响应研究进展[J]. 地震研究, 2021, 44(4): 541-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202104004.htm
He G R, Shi Z M. Advance in the groundwater level response to barometric pressure and earth tide[J]. Journal of Seismological Research, 2021, 44(4): 541-549 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202104004.htm
|
[37] |
Kamp G, Gale J E. Theory of earth tide and barometric effects in porous formations with compressible grains[J]. Water Resources Research, 1983, 19(2): 538-544. doi: 10.1029/WR019i002p00538
|
[38] |
Merritt M L. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, oceantide, and barometric effects, Collier and Hendry Counties, Florida[R]. [S. l. ]: USGS Water-Resources Investigations Report, 2004.
|
[39] |
Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
|
[40] |
Wang C Y, Doan M L, Xue L, et al. Tidal response of groundwater in a leaky aquifer-application to Oklahoma[J]. Water Resources Research, 2018, 54(10): 8019-8033. doi: 10.1029/2018WR022793
|
[41] |
Cooper H H. The equation of groundwater flow in fixed and deforming coordinates[J]. Journal of Geophysical Research, 1966, 71(20): 4785-4790. doi: 10.1029/JZ071i020p04785
|
[42] |
Acworth R I, Brain T. Calculation of barometric efficiency in shallow piezometers using water levels, atmospheric and earth tide data[J]. Hydrogeology Journal, 2008, 16(8): 1469-1481, 1063. doi: 10.1007/s10040-008-0333-y
|
[43] |
Rau G C, Acworth I, Halloran L J, et al. Quantifying compressible groundwater storage by combining cross-hole seismic surveys and head response to atmospheric tides[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 1910-1930.
|
[44] |
Lai G J, Ge H K, Wang W L. Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 1904-1924.
|
[45] |
Shi Z M, Wang G C. Aquifers switched from confined to semiconfined by earthquakes[J]. Geophysical Research Letters, 2016, 43(21): 11166-11172.
|
[46] |
Lai G J, Jiang C S, Han L B, et al. Co-seismic water level changes in response to multiple large earthquakes at the LGH well in Sichuan, China[J]. Tectonophysics, 2016, 679: 211-217.
|
[47] |
Rutter H K, Cox S C, Ward N F D, et al. Aquifer permeability change caused by a near-field earthquake, Canterbury, New Zealand[J]. Water Resources Research, 2016, 52(11): 8844-8861.
|
[48] |
Shi Y, Liao X, Zhang D, et al. Seismic waves could decrease the permeability of the shallow crust[J]. Geophysical Research Letters, 2019, 46(12): 6371-6377.
|
[49] |
Zhang H, Shi Z M, Wang G C, et al. Large earthquake reshapes the groundwater flow system: Insight from the water-level response to earth tides and atmospheric pressure in a deep well[J]. Water Resources Research, 2019, 55(5): 4207-4219.
|
[50] |
Sun X L, Xiang Y. Heterogeneous permeability changes along a fault zone caused by the Xingwen M5.7 earthquake in SW China[J]. Geophysical Research Letters, 2019, 46(24): 14404-14411.
|
[51] |
Weaver K C, Doan M L, Cox S C, et al. Tidal behavior and water-level changes in gravel aquifers in response to multiple earthquakes: A case study from New Zealand[J]. Water Resources Research, 2019, 55(2): 1263-1278.
|
[52] |
Yan R, Wang G C, Shi Z M. Sensitivity of hydraulic properties to dynamic strain within a fault[J]. Journal of Hydrology, 2016, 543(B): 721-728.
|
[53] |
Zhang H, Shi Z M, Wang G C, et al. Different sensitivities of earthquake-induced water level and hydrogeological property variations in two aquifer systems[J]. Water Resources Research, 2021, 57(5): e2020WR028217.
|
[54] |
Manga M, Beresnev I, Brodsky E E, et al. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms[J]. Reviews of Geophysics, 2012, 50(2): RG2004.
|
[55] |
白阳, 齐跃明, 项敏, 等. 南梁煤层开采地下水系统演化规律[J]. 地质科技通报, 2022, 41(1): 183-192. doi: 10.19509/j.cnki.dzkq.2022.0034
Bai Y, Qi Y M, Xiang M, et al. Evolution law of groundwater system with multiple seams mining in Nanliang Coal Mine[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 183-192 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0034
|
[56] |
Forster I, Enever J. Hydrogeological response of overburden strata to underground mining[R]. Office of Energy Report, 1992.
|
[57] |
Miao X X, Cui X M, Wang J A, et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology, 2011, 120(1/4): 32-39.
|
[58] |
Qu S, Shi Z M, Wang G C, et al. Using water-level fluctuations in response to Earth-tide and barometric-pressure changes to measure the in-situ hydrogeological properties of all overburden aquifer in a coalfield[J]. Hydrogeology Journal, 2020, 28(4): 1465-1479.
|
[59] |
Qu S, Wang G C, Shi Z M, et al. Temporal changes of hydraulic properties of overburden aquifer induced by longwall mining in Ningtiaota coalfield, northwest China[J]. Journal of Hydrology, 2020, 582: 124525.
|
[60] |
Odling N E, Serrano R P, Hussein M, et al. Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions[J]. Journal of Hydrology, 2015, 520: 143-156.
|
[61] |
Gao X H, Sato K, Horne R N. General solution for tidal behavior in confined and semiconfined aquifers considering skin and wellbore storage effects[J]. Water Resources Research, 2020, 56(6): e2020WR027195.
|