Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
GUO Yanhao, DOU Jie, XIANG Zilin, MA Hao, DONG Aonan, LUO Wanqi. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251-265. doi: 10.19509/j.cnki.dzkq.tb20230037
Citation: GUO Yanhao, DOU Jie, XIANG Zilin, MA Hao, DONG Aonan, LUO Wanqi. Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 251-265. doi: 10.19509/j.cnki.dzkq.tb20230037

Susceptibility evaluation of Wenchuan coseismic landslides by gradient boosting decision tree and random forest based on optimal negative sample sampling strategies

doi: 10.19509/j.cnki.dzkq.tb20230037
More Information
  • Author Bio:

    GUO Yanhao, E-mail: 605431412@cug.edu.cn

  • Corresponding author: DOU Jie, E-mail: doujie@cug.edu.cn
  • Received Date: 28 Jan 2023
  • Accepted Date: 04 May 2023
  • Rev Recd Date: 29 Apr 2023
  • Objective

    Strong earthquake-induced landslides are characterized by large number, wide distribution and large scale, and seriously threaten people's lives and property. Landslide susceptibility mapping (LSM) can quickly predict the spatial distribution of prone areas, which is highly important for reducing the risk of post-earthquake disasters. However, in the studies of coseismic landslide LSMs, how to select negative landslide samples and integrate machine learning models to improve the evaluation accuracy still needs further investigation.

    Methods

    In this study, the landslides induced by the Wenchuan earthquake in mountainous areas are selected as a case study. First, 10 landslide influencing factors, such as topography, geological environment, and seismic parameters, are selected to analyse the spatial distribution of landslides. Then, collinearity analysis is used to test data redundancy, nonnegative sample points from the sampling strategies are randomly selected in the extremely low susceptibility regions by the frequency ratio (FR) method. Finally, gradient boosting decision tree (GBDT), random forest (RF), and their optimal models are used to predict coseismic landslide susceptibility, conduct a comparative study of the models and carry out an accuracy assessment.

    Results

    The results show that ① the spatial distribution of landslides is controlled by multiple factors, and ② the accuracy of the models is FR-RF(AUC=0.943)>FR-GBDT(AUC=0.926)>RF(AUC=0.901)>GBDT(AUC=0.856). ③ Selecting negative landslide samples in low susceptibility areas could significantly improve the accuracy of LSMs.

    Conclusion

    The research results can provide a reference for selecting negative landslide samples and constructing evaluation models, as well as for providing theoretical support for post-earthquake disaster prevention and mitigation.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    杨迁, 王雁林, 马园园. 2001-2019年中国地质灾害分布规律及引发因素分析[J]. 地质灾害与环境保护, 2020, 31(4): 43-48. doi: 10.3969/j.issn.1006-4362.2020.04.008

    YANG Q, WANG Y L, MA Y Y. Distribution rule and influencing factors of geological disasters from 2001 to 2019 in China[J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(4): 43-48. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2020.04.008
    [2]
    李宏杰, 戴福初, 许冲. 地震滑坡研究现状综述[C]//佚名. 2011年AASRI智能信息技术应用学会论文集. [出版地不详]: [出版社不详], 2011: 172-179.

    LI H J, DAI F C, XU C. A review of the research on earthquake-induced landslides[C]//Anon. 2011 AASRI Conference on Applied Information Technology (AASRI-AIT 2011). [S. l.]: [s. n.], 2011: 172-179. (in Chinese with English abstract)
    [3]
    唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13. doi: 10.19509/j.cnki.dzkq.2022.0203

    TANG H M. Advance and prospects of major landslides prediction and forecasting[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0203
    [4]
    王兰民, 郭安宁, 王平, 等. 1920年海原大地震震害特征与启示[J]. 城市与减灾, 2020(6): 43-53. doi: 10.3969/j.issn.1671-0495.2020.06.007

    WANG L M, GUO A N, WANG P, et al. Characteristics and revelation of great Haiyuan earthquake disaster in 1920[J]. City and Disaster Reduction, 2020(6): 43-53. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-0495.2020.06.007
    [5]
    许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25-44. doi: 10.3969/j.issn.1004-9665.2013.01.004

    XU C, XU X W, WU X Y, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan earthquake and statistical analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25-44. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.01.004
    [6]
    王欣, 方成勇, 唐小川, 等. 泸定Ms 6.8地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202301003.htm

    WANG X, FANG C Y, TANG X C, et al. Research on emergency evaluation of landslides induced by the Luding Ms 6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 25-35. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202301003.htm
    [7]
    XIANG Z L, DOU J, YUNUS A P, et al. Vegetation-landslide nexus and topographic changes post the 2004 Mw 6.6 Chuetsu earthquake[J]. CATENA, 2023, 223: 106946. doi: 10.1016/j.catena.2023.106946
    [8]
    HUANG Y, ZHAO L. Review on landslide susceptibility mapping using support vector machines[J]. CATENA, 2018, 165: 520-529. doi: 10.1016/j.catena.2018.03.003
    [9]
    MERGHADI A, YUNUS A P, DOU J, et al. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225. doi: 10.1016/j.earscirev.2020.103225
    [10]
    ADO M, AMITAB K, MAJI A K, et al. Landslide susceptibility mapping using machine learning: A literature survey[J]. Remote Sensing, 2022, 14(13): 3029. doi: 10.3390/rs14133029
    [11]
    冷伏海, 周秋菊, 杨帆, 等. 2020研究前沿[R]. 北京: 中国科学院科技战略咨询研究院, 2020.

    LENG F H, ZHOU Q J, YANG F, et al. 2020 research fronts[R]. Beijing: Institutes of Science and Development, Chinese Academy of Sciences, 2020.
    [12]
    BAI S B, WANG J, LÜ G N, et al. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China[J]. Geomorphology, 2010, 115(1/2): 23-31.
    [13]
    CHEN W, XIE X S, WANG J L, et al. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility[J]. CATENA, 2017, 151: 147-160. doi: 10.1016/j.catena.2016.11.032
    [14]
    DOU J, YAMAGISHI H, POURGHASEMI H R, et al. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan[J]. Natural Hazards, 2015, 78(3): 1749-1776. doi: 10.1007/s11069-015-1799-2
    [15]
    MA Z J, MEI G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities[J]. Earth-Science Reviews, 2021, 223: 103858. doi: 10.1016/j.earscirev.2021.103858
    [16]
    窦杰, 向子林, 许强, 等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 2023, 48(5): 1657-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305001.htm

    DOU J, XIANG Z L, XU Q, et al. Application and development trend of machine learning in landslide intelligent disaster prevention and mitigation[J]. Earth Science, 2023, 48(5): 1657-1674. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305001.htm
    [17]
    黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087

    HUANG F M, HU S Y, YAN X Y, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0087
    [18]
    杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报, 2022, 41(2): 228-238. doi: 10.19509/j.cnki.dzkq.2022.0059

    YANG C, LIU L L, ZHANG Y L, et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 228-238. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0059
    [19]
    LUO W Q, DOU J, FU Y H, et al. A novel hybrid LMD-ETS-TCN approach for predicting landslide displacement based on GPS time series analysis[J]. Remote Sensing, 2022, 15(1): 229. doi: 10.3390/rs15010229
    [20]
    NI W D, ZHAO L Y, ZHANG L L, et al. Coupling progressive deep learning with the AdaBoost framework for landslide displacement rate prediction in the Baihetan Dam Reservoir, China[J]. Remote Sensing, 2023, 15(9): 2296. doi: 10.3390/rs15092296
    [21]
    DOU J, YUNUS A P, BUI D T, et al. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan[J]. Landslides, 2020, 17(3): 641-658. doi: 10.1007/s10346-019-01286-5
    [22]
    DOU J, YUNUS A P, TIEN BUI D, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan[J]. Science of the Total Environment, 2019, 662: 332-346. doi: 10.1016/j.scitotenv.2019.01.221
    [23]
    UMAR Z, PRADHAN B, AHMAD A, et al. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia[J]. CATENA, 2014, 118: 124-135. doi: 10.1016/j.catena.2014.02.005
    [24]
    ZHU A X, MIAO Y M, YANG L, et al. Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping[J]. CATENA, 2018, 171: 222-233. doi: 10.1016/j.catena.2018.07.012
    [25]
    CHOI J, OH H J, LEE H J, et al. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS[J]. Engineering Geology, 2012, 124: 12-23. doi: 10.1016/j.enggeo.2011.09.011
    [26]
    DOU J, TIEN BUI D, YUNUS A P, et al. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan[J]. PLoS One, 2015, 10(7): e0133262. doi: 10.1371/journal.pone.0133262
    [27]
    周晓亭, 黄发明, 吴伟成, 等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 2022, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm

    ZHOU X T, HUANG F M, WU W C, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences, 2022, 54(3): 25-35. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
    [28]
    LIU L L, ZHANG Y L, XIAO T, et al. A frequency ratio-based sampling strategy for landslide susceptibility assessment[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 360. doi: 10.1007/s10064-022-02836-3
    [29]
    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001

    YIN Y P. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.04.001
    [30]
    FAN X M, SCARINGI G, DOMÈNECH G, et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake[J]. Earth System Science Data, 2019, 11(1): 35-55. doi: 10.5194/essd-11-35-2019
    [31]
    OZDEMIR A, ALTURAL T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey[J]. Journal of Asian Earth Sciences, 2013, 64: 180-197. doi: 10.1016/j.jseaes.2012.12.014
    [32]
    LIU R, LI L Y, PIRASTEH S, et al. The performance quality of LR, SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery[J]. Arabian Journal of Geosciences, 2021, 14(4): 259. doi: 10.1007/s12517-021-06573-x
    [33]
    MEZAAL M R, PRADHAN B. An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data[J]. CATENA, 2018, 167: 147-159. doi: 10.1016/j.catena.2018.04.038
    [34]
    SCHONLAU M, ZOU R Y. The random forest algorithm for statistical learning[J]. The Stata Journal: Promoting Communications on Statistics and Stata, 2020, 20(1): 3-29. doi: 10.1177/1536867X20909688
    [35]
    FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378.
    [36]
    王恒, 姜亚楠, 张欣, 等. 基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103026.htm

    WANG H, JIANG Y N, ZHANG X, et al. Lithology identification method based on gradient boosting algorithm[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 940-950. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202103026.htm
    [37]
    李永威, 徐林荣, 张亮亮, 等. 强震山区地震诱发滑坡发育规律与易发性评估[J]. 地球科学, 2023, 48(5): 1960-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305020.htm

    LI Y W, XU L R, ZHANG L L, et al. Study on development patterns and susceptibility evaluation of coseismic landslides within mountainous regions influenced by strong earthquakes[J]. Earth Science, 2023, 48(5): 1960-1976. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305020.htm
    [38]
    蔡生来. 安徽怀宁县崩塌、滑坡和泥石流孕灾地质条件特征研究[J]. 安徽地质, 2021, 31(3): 265-269. doi: 10.3969/j.issn.1005-6157.2021.03.017

    CAI S L. A study on the features of the geological conditions inducing hazards of collapse, landslide and debris flow in Huaining County, Anhui Province[J]. Geology of Anhui, 2021, 31(3): 265-269. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-6157.2021.03.017
    [39]
    周毅, 丁明涛, 黄涛, 等. 芦山县滑坡灾害影响因素的空间分异性[J]. 中国地质调查, 2022, 9(4): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202204006.htm

    ZHOU Y, DING M T, HUANG T, et al. Spatial heterogeneity of influencing factors of landslide disasters in Lushan County[J]. Geological Survey of China, 2022, 9(4): 45-55. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202204006.htm
    [40]
    柳万里. 含泥岩类夹层巴东组斜坡工程地质特性及其孕滑机理研究[D]. 武汉: 中国地质大学(武汉), 2022.

    LIU W L. Study on engineering geological characteristics and pregnant sliding mechanism of Badong Formation slope with mudstone interlayer[D]. Wuhan: China University of Geosciences (Wuhan), 2022. (in Chinese with English abstract)
    [41]
    FAN X M, SCARINGI G, XU Q, et al. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification[J]. Landslides, 2018, 15(5): 967-983. doi: 10.1007/s10346-018-0960-x
    [42]
    XU C, XU X W, YAO X, et al. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2014, 11(3): 441-461. doi: 10.1007/s10346-013-0404-6
    [43]
    PHAM B T, PRAKASH I, SINGH S K, et al. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches[J]. CATENA, 2019, 175: 203-218. doi: 10.1016/j.catena.2018.12.018
    [44]
    陈飞, 蔡超, 李小双, 等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2020, 39(增刊1): 2859-2870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1027.htm

    CHEN F, CAI C, LI X S, et al. Evaluation of landslide susceptibility based on information valueme and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2859-2870. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1027.htm
    [45]
    王世宝, 庄建琦, 郑佳, 等. 基于深度学习的CZ铁路康定-理塘段滑坡易发性评价[J]. 工程地质学报, 2022, 30(3): 908-919. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203028.htm

    WANG S B, ZHUANG J Q, ZHENG J, et al. Landslide susceptibility evaluation based on deep learning along Kangding-Litang section of CZ railway[J]. Journal of Engineering Geology, 2022, 30(3): 908-919. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203028.htm
    [46]
    CHANG K T, MERGHADI A, YUNUS A P, et al. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques[J]. Scientific Reports, 2019, 9(1): 12296. doi: 10.1038/s41598-019-48773-2
    [47]
    郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm

    GUO Z Z, YIN K L, HUANG F M, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287-300. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
    [48]
    FRATTINI P, CROSTA G, CARRARA A. Techniques for evaluating the performance of landslide susceptibility models[J]. Engineering Geology, 2010, 111(1/4): 62-72.
    [49]
    崔玉龙, 刘爱娟. 区域边坡地震危险性评价理论研究进展[J]. 地震工程学报, 2022, 44(3): 518-526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202203003.htm

    CUI Y L, LIU A J. Advances in the theory of seismic hazard assessment of regional slopes[J]. China Earthquake Engineering Journal, 2022, 44(3): 518-526. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202203003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(453) PDF Downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return