Volume 42 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Zhang Qiaoran, Xiao Hongping, Rao Song, Shi Yizuo, Li Wenjing, Huang Shunde, Hu Guangming. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 191-204. doi: 10.19509/j.cnki.dzkq.tb20230058
Citation: Zhang Qiaoran, Xiao Hongping, Rao Song, Shi Yizuo, Li Wenjing, Huang Shunde, Hu Guangming. Characteristics and controlling factors of the present geothermal field in the Songliao Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 191-204. doi: 10.19509/j.cnki.dzkq.tb20230058

Characteristics and controlling factors of the present geothermal field in the Songliao Basin

doi: 10.19509/j.cnki.dzkq.tb20230058
  • Received Date: 07 Feb 2023
  • Accepted Date: 12 Apr 2023
  • Rev Recd Date: 11 Apr 2023
  • Objective

    The geothermal field in the present sedimentary basin is a result of the energy balance between various dynamic processes on the Earth. It serves as an important tool for understanding continental dynamics, such as tectonic deformation and the evolution of the continental lithosphere. Additionally, it provides the basis for evaluating regional geothermal resources.

    Methods

    A comprehensive study of the geothermal field in the entire Songliao Basin was conducted using oil-test temperatures from 826 wells and thermal conductivities measured by the optical scanning method. Formation temperatures at depths of 1 000 m, 2 000 m, 3 000 m, and 4 000 m were estimated using deep temperature prediction technology.

    Results

    The results indicate that the present geothermal gradient in the Songliao Basin ranges from 22.5 to 69.0℃/km, with an average of 44.0℃/km. The thermal conductivity values of rocks in the central depression area are relatively concentrated, mostly ranging from 1.60 W/(m·K) to 2.40 W/(m·K), with an average of 1.84 W/(m·K). Among these, mudstone has the lowest thermal conductivity, with an average of 1.77 W/(m·K); siltstone has a middle range with an average of 1.87 W/(m·K); and fine sandstone has the highest thermal conductivity, with an average of 2.12 W/(m·K). The heat flow ranges from 35.0 to 98.8 mW/m2, with an average of 76.9 mW/m2. The basin exhibits a typical "hot basin" characteristic, with higher heat flow in the central depression and lower heat flow in the slope and uplift areas, forming an annular distribution pattern. Geothermal anomaly areas are distributed in the northeast of the central depression and the northwest of the southeastern uplifted region. The formation temperature at a depth of 1, 000 m ranges from 26.9 to 72.3℃, with an average of 47.9℃; at 2 000 m, it ranges from 49.4 to 141.3℃, with an average of 91.9℃; at 3 000 m, it ranges from 71.8 to 167.5℃, with an average of 135.8℃; and at 4 000 m, it ranges from 94.3 to 210.9℃, with an average of 179.8℃.

    Conclusion

    These findings suggest that the subduction of the Pacific Plate beneath the Eurasian Plate has caused upwelling of the asthenosphere and rapid thinning of the regional lithosphere, resulting in a significant increase in heat from the mantle. Simultaneously, the thinned crust facilitates the upward conduction of mantle heat. The widespread NNE and NW fault systems in the basin provide channels for the rise of mantle material and heat flow. Some mantle material remains in the middle and lower crust along deep faults, forming high-conductivity and low-velocity bodies that continuously heat the crust. A portion of the volcanic activity in the Songliao Basin is attributed to the eruption of Cenozoic volcanoes through faults. The presence of granite in the basin's basement plays a significant role in generating heat through the decay of radioactive elements, thereby serving as an important heat source. The heterogeneity of the current geothermal field can be attributed to variations in crustal structure among different tectonic units. The difference in thermal conductivity between the basement and sedimentary layers leads to a "refraction" effect on heat flow, resulting in the redistribution of heat in the shallow part of the basin and the formation of a distinct heat flow distribution pattern between concave and convex areas. The favorable combination of reservoir capacity in the Songliao Basin provides ideal conditions for heat storage, making it conducive for the development of low- and medium-temperature geothermal resources.

     

  • loading
  • [1]
    汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    Wang J Y. Geothermics and its applications[M]. Beijing: Science Press, 2015(in Chinese).
    [2]
    汪集暘, 邱楠生, 胡圣标, 等. 中国油田地热研究的进展和发展趋势[J]. 地学前缘, 2017, 24(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703002.htm

    Wang J Y, Qiu N S, Hu S B, et al. Advancement and developmental trend in the geothermics of oil fields in China[J]. Earth Seience Frontiers, 2017, 24(3): 1-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703002.htm
    [3]
    唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007013.htm

    Tang X C, Wang G L, Ma Y, et al. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2020, 94(7): 2052-2065(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007013.htm
    [4]
    何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11(9): 966-969. doi: 10.3321/j.issn:1002-008X.2001.09.013

    He L J, Hu S B, Wang J Y. Characteristics of lithospheric thermal structure in the eastern continental China[J]. Progress in Natural Science, 2001, 11(9): 966-969(in Chinese). doi: 10.3321/j.issn:1002-008X.2001.09.013
    [5]
    任战利, 张盛, 高胜利, 等. 鄂尔多斯盆地热演化程度异常分布区及形成时期探讨[J]. 地质学报, 2006, 80(5): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605008.htm

    Ren Z L, Zhang S, Gao S L, et al. Research on region of maturation anomaly and formation time in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 674-684(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605008.htm
    [6]
    邱楠生, 左银辉, 常健, 等. 中国东西部典型盆地中-新生代热体制对比[J]. 地学前缘, 2015, 22(1): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501015.htm

    Qiu N S, Zuo Y H, Chang J, et al. Characteristics of Meso-Cenozoic thermal regimes in typical eastern and western sedimentary basins of China[J]. Earth Seience Frontiers, 2015, 22(1): 157-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501015.htm
    [7]
    饶松, 高腾, 肖红平, 等. 中国油区地热开发利用进展[J]. 科技导报, 2022, 40(20): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202220008.htm

    Rao S, Gao T, Xiao H P, et al. Progress and prospective of geothermal exploitation and utilization in oil fields of China[J]. Science and Technology Review, 2022, 40(20): 65-75(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202220008.htm
    [8]
    王社教, 李峰, 闫家泓, 等. 油田地热资源评价方法及应用[J]. 石油学报, 2020, 41(5): 553-564. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005004.htm

    Wang S J, Li F, Yan J H, et al. Evaluation methods and application of geothermal resources in oil fields[J]. Acta Petrolei Sinica, 2020, 41(5): 553-564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005004.htm
    [9]
    吴乾蕃, 谢毅真. 松辽盆地大地热流[J]. 地震地质, 1985, 7(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198502009.htm

    Wu Q F, Xie Y Z. Geothermal heat flow in the Songhuajiang-Liaoning Basin[J]. Seismology and Geology, 1985, 7(2): 59-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198502009.htm
    [10]
    韩湘君, 金旭. 中国东北地区地热资源及热结构分析[J]. 地质与勘探, 2002, 38(1): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200201020.htm

    Han X J, Jin X. Geothermal resource and thermal structure in northeastern China[J]. Geology and Prospecting, 2002, 38(1): 74-76(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200201020.htm
    [11]
    朱焕来. 松辽盆地北部沉积盆地型地热资源研究[D]. 黑龙江大庆: 东北石油大学, 2011.

    Zhu H L. Research on the sedimentary geothermal resources in north Songliao Basin[D]. Daqing Helongjiang: Northeast Petroleum University, 2011(in Chinese with English abstract).
    [12]
    张健, 何雨蓓, 范艳霞. 松辽盆地地壳热结构与深部热源条件[J/OL]. 地球科学与环境学报: 1-11(2022-10-25)[2023-02-02]. doi: 10.19814/j.jese.2022.07035.

    Zhang J, He Y P, Fan Y X. Crustal thermal structure and deep heat source conditions in Songliao Basin, NE China[J]. Journal of Earth Sciences and Environment: 1-11(2022-10-25)[2023-02-02]. doi: 10.19814/j.jese.2022.07035.(Chinese with English abstract).
    [13]
    施亦做, 王社教, 肖红平, 等. 基于三维地质建模的松辽盆地北部地温场模拟[J]. 天然气工业, 2022, 42(4): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204004.htm

    Shi Y Z, Wang S J, Xiao H P, et al. 3D GeoModeller-based simulation of the geothermal field in the northern Songliao Basin[J]. Natural Gas Industry, 2022, 42(4): 46-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204004.htm
    [14]
    牛璞, 韩江涛, 曾昭发, 等. 松辽盆地北部地热场深部控制因素研究: 基于大地电磁探测的结果[J]. 地球物理学报, 2021, 64(11): 4060-4074. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111020.htm

    Niu P, Han J T, Zeng Z F, et al. Deep controlling factors of the geothermal field in the northern Songliao Basin derived from magnetotelluric survey[J]. Chinese Journal of Geophsics, 2021, 64(11): 4060-4074(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111020.htm
    [15]
    瞿雪姣, 高有峰, 林志成, 等. 松辽盆地及周缘地区侏罗系/白垩系界线区域对比特征探讨[J]. 地学前缘, 2021, 28(4): 299-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104035.htm

    Qu X J, Gao Y F, Lin Z C, et al. Discussion on the characteristics of the Jurassic-Cretaceous boundary correlation in the Songliao Basin and adjacent areas[J]. Earth Seience Frontiers, 2021, 28(4): 299-315(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104035.htm
    [16]
    胡望水, 吕炳全, 张文军, 等. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学, 2005, 40(1): 16-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200501002.htm

    Hu W S, Lü B Q, Zhang W J, et al. An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Chinese Journal of Geology, 2005, 40(1): 16-31(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200501002.htm
    [17]
    Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344: 175-205.
    [18]
    Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin[J]. Basin Research, 2010, 22: 79-95.
    [19]
    王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089

    Wang X D, Wang R, Shi W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0089
    [20]
    葛荣峰, 张庆龙, 王良书, 等. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评, 2010, 56(2): 180-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm

    Ge R F, Zhang Q L, Wang L S, et al. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China[J]. Geological Review, 2010, 56(2): 180-195(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201002005.htm
    [21]
    韩国卿, 刘永江, 金巍, 等. 西拉木伦河断裂在松辽盆地下部的延伸[J]. 中国地质, 2009, 36(5): 1010-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200905008.htm

    Han G Q, Liu Y J, Jin W, et al. The distribution of Xar Moron River fault under Songliao Basin[J]. Geology in China, 2009, 36(5): 1010-1020(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200905008.htm
    [22]
    Wang C, Feng Z, Zhang L, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(5): 17-30.
    [23]
    Hou H S, Wang C H, Zhang J D, et al. Deep continental scientific drilling engineering project in Songliao Basin: Progress in earth science research[J]. China Geology, 2018, 1(2): 173-186.
    [24]
    邱楠生, 胡圣标, 何丽娟. 沉积盆地地热学[M]. 北京: 中国石油大学出版社, 2019.

    Qiu N S, Hu S B, He L J. Geothermics in sedimentary basins[M]. Beijing: China University of Petroleum Press, 2019(in Chinese).
    [25]
    李春荣, 饶松, 胡圣标, 等. 川东南焦石坝页岩气区现今地温场特征[J]. 地球物理学报, 2017, 60(2): 617-627. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702016.htm

    Li C R, Rao S, Hu S B, et al. Present-day geothermal field of the Jiaoshiba shale gas area in southeast of the Sichuan Basin, SW China[J]. Chinese Journal of Geophsics, 2017, 60(2): 617-627(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702016.htm
    [26]
    Wu S H, Yu Z W, Kang J G, et al. Research on the anisotropy of thermal conductivity of rocks in Songliao Basin, China[J]. Renewable Energy, 2021, 179: 593-603.
    [27]
    姜光政. 中国东北地区大地热流测量与岩石圈热结构[D]. 北京: 中国科学院大学(中国科学院地质与地球物研究所), 2017.

    Jiang G Z. Heat flow measurements and lithospheric thermal structure in northeastern China[D]. Beijing: University of Chinese Academy of Sciences(Institute of Geology and Geophysics Chinese Academy of Sciences), 2017(in Chinese with English abstract).
    [28]
    饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6): 2176-2190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm

    Rao S, Jiang G Z, Gao Y J, et al. The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophsics, 2016, 59(6): 2176-2190(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm
    [29]
    Wang Z T, Rao S, Xiao H P, et al. Terrestrial heat flow of Jizhong Depression, China, western Bohai Bay Basin and its influencing factors[J]. Geothermics, 2021, 96: 102210.
    [30]
    Wang Y B, Wang L J, Hu D, et al. The present-day geothermal regime of the north Jiangsu Basin, East China[J]. Geothermic, 2020, 88: 101829.
    [31]
    徐明, 朱传庆, 田云涛, 等. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 2011, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm

    Xu M, Zhu C Q, Tian Y T, et al. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin[J]. Chinese Journal of Geophsics, 2011, 54(4): 1052-1060(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm
    [32]
    刘润川, 任战利, 叶汉青, 等. 地热资源潜力评价: 以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报, 2021, 40(4): 565-576. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104013.htm

    Liu R C, Ren Z L, Ye H Q, et al. Potential evaluation of geothermal resources: Exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China, 2021, 40(4): 565-576(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104013.htm
    [33]
    任战利, 于强, 崔军平, 等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘, 2017, 24(3): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703016.htm

    Ren Z L, Yu Q, Cui J P, et al. Thermal history and its controls on oil and gas of the Ordos Basin[J]. Earth Science Frontiers, 2017, 24(3): 137-148(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703016.htm
    [34]
    Pang Y M, Zou K Z, Guo X W, et al. Geothermal regime and implications for basin resource exploration in the Qaidam Basin, northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2022, 239: 105400.
    [35]
    刘绍文, 李香兰, 郝春艳, 等. 塔里木盆地的热流、深部温度和热结构[J]. 地学前缘, 2017, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm

    Liu S W, Li X L, Hao C Y, et al. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China[J]. Earth Seience Frontiers, 2017, 24(3): 41-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm
    [36]
    黄少英, 胡方杰, 张科, 等. 塔里木盆地中央隆起超深层现今地温场特征[J]. 地质学报, 2021, 96(11): 3955-3966. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211019.htm

    Huang S Y, Hu F J, Zhang K, et al. Present-day geotemperature field of superdeep layers in the Central Uplift, Tarim Basin[J]. Acta Geologica Sinica, 2021, 96(11): 3955-3966(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202211019.htm
    [37]
    饶松, 胡圣标, 朱传庆, 等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760-2770. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308025.htm

    Rao S, Hu S B, Zhu C Q, et al. The characteristics of heat flow and litospheric thermal structure in Junggar Basin, northwest China[J]. Chinese Journal of Geophsics, 2013, 56(8): 2760-2770(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308025.htm
    [38]
    姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm

    Jiang G Z, Gao P, Rao S, et al. Compilation of heat flow data in the cotinental area of China(4th edition)[J]. Chinese Journal of Geophsics, 2016, 59(8): 2892-2910(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
    [39]
    王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202301003.htm

    Wang G L, Ma F, Hou H S, et al. Study of depression and layer controlled geothermal system in Songliao Basin[J]. Acta Geoscientica Sinica, 2023, 44(1): 21-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202301003.htm
    [40]
    田有, 马锦程, 刘财, 等. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 2019, 62(3): 1071-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903020.htm

    Tian Y, Ma J C, Liu C, et al Effects of subduction of the western Pacific Plate on tectonic evolution of northeast China and geodynamic implications[J]. Chinese Journal of Geophsics, 2019, 62(3): 1071-1082(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903020.htm
    [41]
    韩江涛, 郭振宇, 刘文玉, 等. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报, 2018, 61(6): 2265-2279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806009.htm

    Han J T, Guo Z Y, Liu W Y, et al. Deep dynamic process of lithosphere thinning in Songliao Basin[J]. Chinese Journal of Geophsics, 2018, 61(6): 2265-2279(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806009.htm
    [42]
    黄旭, 章惠, 汪新伟, 等. 渤海湾盆地南乐地热田特征及其成因分析[J]. 地质科技通报, 2021, 40(5): 71-82. doi: 10.19509/j.cnki.dzkq.2021.0506

    Huang X, Zhang H, Wang X W, et al. Characteristics and mechanism analysis of geothermal field in Nanle sub-uplift, Bohai Bay Baisn[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 71-82(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0506
    [43]
    Li J Y. Permian geodynamic setting of northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
    [44]
    Zhao D P, Yu S, Ohtani E. East Asia: Seismotectonics, magmatism and mantle dynamics[J]. Journal of Asian Earth Sciences, 2011, 40(3): 689-709.
    [45]
    Chen C X, Zhao D P, Tian Y, et al. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia[J]. Geophysical Journal International, 2017: 1-38.
    [46]
    苏玉娟. 松辽盆地典型地热田成因机制及合理开发利用研究[D]. 长春: 吉林大学, 2021.

    Su Y J. Genesis and rational development of typical geothermal field in the Songliao Basin: A case study of Lindian geothermal field[D]. Changchun: Jilin University, 2021(in Chinese with English abstract).
    [47]
    谭世燕, 石义强, 赵育捷. 松辽盆地地热资源的形成与远景评价[J]. 世界地质, 2001, 20(2): 155-160, 201. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200102009.htm

    Tan S Y, Shi Y Q, Zhao Y J. The formation and prospective evaluation of geothermal resources in the Songliao Basin[J]. World Geology, 2001, 20(2): 155-160, 201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200102009.htm
    [48]
    Shi Y Z, Jiang G Z, Shi S M, et al. Terrestrial heat flow and its geodynamic implications in the northern Songliao Basin, northeast China[J]. Geophysical Journal International, 2021, 0: 1-22.
    [49]
    康凤新, 赵季初, 黄迅, 等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学, 2023, 48(3): 1080-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303017.htm

    Kang F X, Zhao J C, Huang X, et al. Heat accumulation mechanism and resources potential of the karst geothermal reservoir in Liangcun buried uplift of Linqing Depression[J]. Earth Science, 2023, 48(3): 1080-1092(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303017.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(250) PDF Downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return