Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
ZHANG Qian, DONG Yanhui. Numerical simulation method for reactive solute transport based on micro-continuum medium model[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 289-300. doi: 10.19509/j.cnki.dzkq.tb20230081
Citation: ZHANG Qian, DONG Yanhui. Numerical simulation method for reactive solute transport based on micro-continuum medium model[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 289-300. doi: 10.19509/j.cnki.dzkq.tb20230081

Numerical simulation method for reactive solute transport based on micro-continuum medium model

doi: 10.19509/j.cnki.dzkq.tb20230081
More Information
  • Significance

    Fluid-solid interactions in reactive solute transport processes, governed by physical and chemical heterogeneities, dictate the evolution of subsurface geomaterials, resulting in nonlinear behaviours and multiscale features. It has become increasingly evident that examining the feedback between microscopic features and macroscopic behaviours in geomaterials is critical in various academic and industrial applications.

    Progress

    In this study, we introduce the concept and framework, mathematical and numerical models of the micro-continuum medium, as well as multiscale solvers and applications. Challenges in co-designed simulations and experiments are also discussed.

    Conclusion and Prospects

    Despite offering valuable insights into reactive transport processes, continuum-scale modelling or pore-scale modelling suffers from a gap between theoretical understanding and computational prediction. Recently, an alternative conceptualization of the multiscale problem involves the implementation of the Darcy-Brinkman-Stokes (DBS) equation in a single micro-continuum domain to identify reactive transport patterns across spatial scales under changing flow regimes. As fluid-solid interfaces cannot be explicitly resolved as in pore-scale models, the micro-continuum medium approach has the advantage of accommodating complex geometries or evolving interfaces without increasing computational costs.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    BULTREYS T, DE BOEVER W, CNUDDE V. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[J]. Earth-Science Reviews, 2016, 155: 93-128. doi: 10.1016/j.earscirev.2016.02.001
    [2]
    BECKINGHAM L E, STEEFEL C I, SWIFT A M, et al. Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media[J]. Geochimica et Cosmochimica Acta, 2017, 205: 31-49. doi: 10.1016/j.gca.2017.02.006
    [3]
    STEEFEL C I, APPELO C A J, ARORA B, et al. Reactive transport codes for subsurface environmental simulation[J]. Computational Geosciences, 2015, 19(3): 445-478. doi: 10.1007/s10596-014-9443-x
    [4]
    GUALDA G A R, BAKER D R, POLACCI M. Introduction: Advances in 3D imaging and analysis of geomaterials[J]. Geosphere, 2010, 6(5): 468-469. doi: 10.1130/GES00639.1
    [5]
    姚军, 孙海, 李爱芬, 等. 现代油气渗流力学体系及其发展趋势[J]. 科学通报, 2018, 63(4): 425-451. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201804006.htm

    YAO J, SUN H, LI A F, et al. Modern system of multiphase flow in porous media and its development trend[J]. Chinese Science Bulletin, 2018, 63(4): 425-451. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201804006.htm
    [6]
    NOIRIEL C, DAVAL D. Pore-scale geochemical reactivity associated with CO2 storage: New frontiers at the fluid-solid interface[J]. Accounts of Chemical Research, 2017, 50(4): 759-768. doi: 10.1021/acs.accounts.7b00019
    [7]
    STEEFEL C I, BECKINGHAM L E, LANDROT G. Micro-continuum approaches for modeling pore-scale geochemical processes[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 217-246. doi: 10.2138/rmg.2015.80.07
    [8]
    PEREZ L J, HIDALGO J J, PUYGUIRAUD A, et al. Assessment and prediction of pore-scale reactive mixing from experimental conservative transport data[J]. Water Resources Research, 2020, 56(6): e2019WR026452. doi: 10.1029/2019WR026452
    [9]
    YOON S, KANG P K. Mixing-induced bimolecular reactive transport in rough channel flows: Pore-scale simulation and stochastic upscaling[J]. Transport in Porous Media, 2023, 146(1): 329-350. http://www.nstl.gov.cn/paper_detail.html?id=18e5c713619af2bd0fadcd8441c1c201
    [10]
    DENG H, MOLINS S, STEEFEL C, et al. A 2.5D reactive transport model for fracture alteration simulation[J]. Environmental Science & Technology, 2016, 50(14): 7564-7571.
    [11]
    DENG H, VOLTOLINI M, MOLINS S, et al. Alteration and erosion of rock matrix bordering a carbonate-rich shale fracture[J]. Environmental Science & Technology, 2017, 51(15): 8861-8868.
    [12]
    SPOKAS K, PETERS C A, PYRAK-NOLTE L. Influence of rock mineralogy on reactive fracture evolution in carbonate-rich caprocks[J]. Environmental Science & Technology, 2018, 52(17): 10144-10152.
    [13]
    施斌. 论工程地质中的场及其多场耦合[J]. 工程地质学报, 2013, 21(5): 673-680. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201305001.htm

    SHI B. On fields and their coupling in engineering geology[J]. Journal of Engineering Geology, 2013, 21(5): 673-680. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201305001.htm
    [14]
    MOLINSS, TREBOTICH D, STEEFEL C I, et al. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation[J]. Water Resources Research, 2012, 48(3): W03527.
    [15]
    MEHMANI A, VERMA R, PRODANOVIĈ M. Pore-scale modeling of carbonates[J]. Marine and Petroleum Geology, 2020, 114: 104141. doi: 10.1016/j.marpetgeo.2019.104141
    [16]
    DÁVILA G, LUQUOT L, SOLER J M, et al. Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions[J]. International Journal of Greenhouse Gas Control, 2016, 48: 105-119. doi: 10.1016/j.ijggc.2015.11.005
    [17]
    LI L, STEEFEL C I, YANG L. Scale dependence of mineral dissolution rates within single pores and fractures[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 360-377. doi: 10.1016/j.gca.2007.10.027
    [18]
    STEEFEL C I, MOLINS S, TREBOTICH D. Pore scale processes associated with subsurface CO2 injection and sequestration[J]. Reviews in Mineralogy and Geochemistry, 2013, 77(1): 259-303. doi: 10.2138/rmg.2013.77.8
    [19]
    BLUNT M J, BIJELJIC B, DONG H, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources, 2013, 51: 197-216. doi: 10.1016/j.advwatres.2012.03.003
    [20]
    ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164. doi: 10.2138/rmg.2015.80.04
    [21]
    OTT H, OEDAI S. Wormhole formation and compact dissolution in single-and two-phase CO2-brine injections[J]. Geophysical Research Letters, 2015, 42(7): 2270-2276. doi: 10.1002/2015GL063582
    [22]
    HORSTEMEYER M F. Multiscale modeling: A review[M]. Dordrecht: Springer, 2009: 87-135.
    [23]
    KIM D, LINDQUIST W B. Dependence of pore-to-core up-scaled reaction rate on flow rate in porous media[J]. Transport in Porous Media, 2011, 89(3): 459-473. doi: 10.1007/s11242-011-9780-3
    [24]
    MATOUŠ K, GEERS M G D, KOUZNETSOVA V G, et al. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials[J]. Journal of Computational Physics, 2017, 330: 192-220. doi: 10.1016/j.jcp.2016.10.070
    [25]
    YOUSEFZADEH M, BATTIATO I. Physics-based hybrid method for multiscale transport in porous media[J]. Journal of Computational Physics, 2017, 344: 320-338. doi: 10.1016/j.jcp.2017.04.055
    [26]
    DENG H, STEEFEL C, MOLINS S, et al. Fracture evolution in multimineral systems: The role of mineral composition, flow rate, and fracture aperture heterogeneity[J]. ACS Earth and Space Chemistry, 2018, 2(2): 112-124. doi: 10.1021/acsearthspacechem.7b00130
    [27]
    BRINKMAN H C. A calculation of the viscosity and the sedimentation constant for solutions of large chain molecules taking into account the hampered flow of the solvent through these molecules[J]. Physica, 1947, 13(8): 447-448. doi: 10.1016/0031-8914(47)90030-X
    [28]
    GOLFIER F, ZARCONE C, BAZIN B, et al. On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium[J]. Journal of Fluid Mechanics, 2002, 457: 213-254. doi: 10.1017/S0022112002007735
    [29]
    GULBRANSEN A F, HAUGE V L, LIE K A. A multiscale mixed finite-element method for vuggy and naturally fractured reservoirs[J]. SPE Journal, 2010, 15(2): 395-403. doi: 10.2118/119104-PA
    [30]
    SOULAINE C, TCHELEPI H A. Micro-continuum approach for pore-scale simulation of subsurface processes[J]. Transport in Porous Media, 2016, 113(3): 431-456. doi: 10.1007/s11242-016-0701-3
    [31]
    SOULAINE C, ROMAN S, KOVSCEK A, et al. Mineral dissolution and wormholing from a pore-scale perspective[J]. Journal of Fluid Mechanics, 2017, 827: 457-483. doi: 10.1017/jfm.2017.499
    [32]
    YAN Z F, LIU C X, LIU Y Y, et al. Multiscale investigation on biofilm distribution and its impact on macroscopic biogeochemical reaction rates[J]. Water Resources Research, 2017, 53(11): 8698-8714. doi: 10.1002/2017WR020570
    [33]
    成建梅, 罗一鸣. 岩溶多重介质地下水模拟技术及应用进展[J]. 地质科技通报, 2022, 41(5): 220-229. doi: 10.19509/j.cnki.dzkq.2022.0220

    CHENG J M, LUO Y M. Overview of groundwater modeling technology and its application in karst areas with multiple-void media[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 220-229. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0220
    [34]
    郑小康, 杨志兵. 岩溶含水层饱和-非饱和流动与污染物运移数值模拟[J]. 地质科技通报, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211

    ZHENG X K, YANG Z B. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0211
    [35]
    MOLINS S, TREBOTICH D, MILLER G H, et al. Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation[J]. Water Resources Research, 2017, 53(5): 3645-3661. doi: 10.1002/2016WR020323
    [36]
    SZYMCZAK P, LADD A J C. Microscopic simulations of fracture dissolution[J]. Geophysical Research Letters, 2004, 31(23): L23606.
    [37]
    MOLINS S. Reactive interfaces in direct numerical simulation of pore-scale processes[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 461-481. doi: 10.2138/rmg.2015.80.14
    [38]
    许天福, 金光荣, 岳高凡, 等. 地下多组分反应溶质运移数值模拟: 地质资源和环境研究的新方法[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1410-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205015.htm

    XU T F, JIN G R, YUE G F, et al. Subsurface reactive transport modeling: A new research approach for geo-resources and environments[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1410-1425. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205015.htm
    [39]
    SOULAINE C, GJETVAJ F, GARING C, et al. The impact of sub-resolution porosity of X-ray microtomography images on the permeability[J]. Transport in Porous Media, 2016, 113(1): 227-243. doi: 10.1007/s11242-016-0690-2
    [40]
    DENG H, SPYCHER N. Modeling reactive transport processes in fractures[J]. Reviews in Mineralogy and Geochemistry, 2019, 85(1): 49-74. doi: 10.2138/rmg.2019.85.3
    [41]
    黄朝琴. 基于离散缝洞网络模型的多尺度两相流动模拟理论研究[D]. 山东青岛: 中国石油大学(华东), 2012.

    HUANG Z Q. Theoretical study on multiscale modeling of two-phase flow based on discrete fracture-vug network model[D]. Qingdao Shandong: China University of Petroleum (East China), 2012. (in Chinese with English abstract)
    [42]
    ZHANG Q, DENG H, DONG Y H, et al. Investigation of coupled processes in fractures and the bordering matrix via a micro-continuum reactive transport model[J]. Water Resources Research, 2022, 58(2): e2021WR030578. doi: 10.1029/2021WR030578
    [43]
    STEEFEL C I, LASAGA A C. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems[J]. American Journal of Science, 1994, 294(5): 529-592. doi: 10.2475/ajs.294.5.529
    [44]
    LASAGA A C. Chapter 4. Transition state theory[M]. Berlin, Boston: De Gruyter, 1981: 135-170.
    [45]
    SOULAINE C, PAVULURI S, CLARET F, et al. porous-Media 4Foam: Multi-scale open-source platform for hydro-geochemical simulations with OpenFOAM[J]. Environmental Modelling & Software, 2021, 145: 105199.
    [46]
    MAES J, MENKE H P. GeoChemFoam: Direct modelling of multiphase reactive transport in real pore geometries with equilibrium reactions[J]. Transport in Porous Media, 2021, 139(2): 271-299. doi: 10.1007/s11242-021-01661-8
    [47]
    JYOTI A, HAESE R R. Validation of a multicomponent reactive-transport model at pore scale based on the coupling of COMSOL and PhreeqC[J]. Computers & Geosciences, 2021, 156: 104870.
    [48]
    YOU J H, LEE K J. Pore-scale study to analyze the impacts of porous media heterogeneity on mineral dissolution and acid transport using darcy-brinkmann-stokes method[J]. Transport in Porous Media, 2021, 137(3): 575-602. doi: 10.1007/s11242-021-01577-3
    [49]
    MOLINS S, SOULAINE C, PRASIANAKIS N I, et al. Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches and benchmark problem set[J]. Computational Geosciences, 2021, 25(4): 1285-1318. doi: 10.1007/s10596-019-09903-x
    [50]
    MAES J, SOULAINE C, MENKE H P. Improved volume-of-solid formulations for micro-continuum simulation of mineral dissolution at the pore-scale[J]. Frontiers in Earth Science, 2022, 10: 917931. doi: 10.3389/feart.2022.917931
    [51]
    NOIRIEL C, SOULAINE C. Pore-scale imaging and modelling of reactive flow in evolving porous media: Tracking the dynamics of the fluid-rock interface[J]. Transport in porous media, 2021, 140(1): 181-213. doi: 10.1007/s11242-021-01613-2
    [52]
    MOLINS S, KNABNER P. Multiscale approaches in reactive transport modeling[J]. Reviews in Mineralogy and Geochemistry, 2019, 85(1): 27-48. doi: 10.2138/rmg.2019.85.2
    [53]
    CARRILLO F J, BOURG I C, SOULAINE C. Multiphase flow modeling in multiscale porous media: An open-source micro-continuum approach[J]. Journal of Computational Physics: X, 2020, 8: 100073. doi: 10.1016/j.jcpx.2020.100073
    [54]
    SOULAINE C, CREUX P, TCHELEPI H A. Micro-continuum framework for pore-scale multiphase fluid transport in shale formations[J]. Transport in Porous Media, 2019, 127(1): 85-112. doi: 10.1007/s11242-018-1181-4
    [55]
    GUO B, MA L, TCHELEPI H A. Image-based micro-continuum model for gas flow in organic-rich shale rock[J]. Advances in Water Resources, 2018, 122: 70-84. doi: 10.1016/j.advwatres.2018.10.004
    [56]
    LI P, DENG H, MOLINS S. The effect of pore-scale two-phase flow on mineral reaction rates[J]. Frontiers in Water, 2022, 3: 734518. doi: 10.3389/frwa.2021.734518
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(378) PDF Downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return