Volume 43 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
FAN Yu, HUANG Kun, DUAN Huiyu, LIN Yuhang, LUO Mingming, WAN Junwei, WEN Hanhui, QU Jincai, ZHANG Longxuan. Control of tectonic evolution on karstification and karst collapse in the Lianzhou Basin, northwestern Guangdong Province[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 273-290. doi: 10.19509/j.cnki.dzkq.tb20230120
Citation: FAN Yu, HUANG Kun, DUAN Huiyu, LIN Yuhang, LUO Mingming, WAN Junwei, WEN Hanhui, QU Jincai, ZHANG Longxuan. Control of tectonic evolution on karstification and karst collapse in the Lianzhou Basin, northwestern Guangdong Province[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 273-290. doi: 10.19509/j.cnki.dzkq.tb20230120

Control of tectonic evolution on karstification and karst collapse in the Lianzhou Basin, northwestern Guangdong Province

doi: 10.19509/j.cnki.dzkq.tb20230120
More Information
  • Author Bio:

    FAN Yu, E-mail: yufan@cug.edu.cn

  • Corresponding author: WAN Junwei, E-mail: wanjw@cug.edu.cn
  • Received Date: 07 Mar 2023
  • Accepted Date: 01 Sep 2023
  • Rev Recd Date: 28 May 2023
  • Objective

    There is still a lack of systematic understanding of the evolution process of the Lianzhou Basin since the Mesozoic and its response to karstic development.

    Methods

    Based on the comprehensive analysis of the latest field geological investigations, hydrogeological drilling, dissolution experiments, and three-dimensional geological modelling, the tectonic evolution stages of the basin can be divided, and the karstification of each stage can be discussed by considering the existing geological data.

    Results

    Before the Cretaceous, carbonate rocks with strong dissolution were successively deposited under the rise or fall movement of the crust, which laid a material foundation for karstic development. The Indosinian movement caused vertically multilayered strata to form an E-W-trending structure, and the Yanshanian movement made the straddle-oblique superimposed a NE-SW-trending structure. They controlled the geological structures, spatial distribution, and dissolution behaviors of carbonate strata. And the distribution of mountains and river system were established. However, karst generally does not develop. An intracontinental and intermountain faulted confluence lake basin formed from the Cretaceous to the Palaeogene, the slow crustal uplift strengthened the karstification around the basin, and it currently retains the early karst platform. Later, they were buried-filled-consolidated by alluvial deposits; therefore, karst basically stopped developing, generating a thick-covered red strata basin. Since the Neogene, the rapid uplift of the crust has led to the continuous elevation of mountains around the basin, deepening of rivers, and strong development of karst, shaping multilevel karst platforms. When part of the Cretaceous red strata in the basin are denuded or cut through, karstification is reactivated. After many changes and penetrations of water systems, the graben basin formed, with karst strata covered by Quaternary sediments, Tectonic evolution controls karstic development, karstification influences the internal structure of the basin, and soil structure causes karst ground collapse.

    Conclusion

    This study can provide a scientific basis and guidance for understanding karst collapse conditions in covered karst areas.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    廖镜彪, 王雪梅, 李玉欣, 等. 城市化对广州降水的影响分析[J]. 气象科学, 2011, 31(4): 384-390. doi: 10.3969/j.issn.1009-0827.2011.04.004

    LIAO J B, WANG X M, LI Y X, et al. An analysis study of the impacts of urbanization on precipitation in Guangzhou[J]. Journal of the Meteorological Sciences, 2011, 31(4): 384-390. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-0827.2011.04.004
    [2]
    陈秀洪, 刘丙军, 李源, 等. 城市化建设对广州夏季降水过程的影响[J]. 水文, 2017, 37(1): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201701005.htm

    CHEN X H, LIU B J, LI Y, et al. Impact of urbanization on summer precipitation process in Guangzhou[J]. Journal of China Hydrology, 2017, 37(1): 25-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201701005.htm
    [3]
    黄国如, 陈易偲, 姚芝军. 高度城镇化背景下珠三角地区极端降雨时空演变特征[J]. 水科学进展, 2021, 32(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202102001.htm

    HUANG G R, CHEN Y S, YAO Z J. Spatial and temporal evolution characteristics of extreme rainfall in the Pearl River Delta under high urbanization[J]. Advances in Water Science, 2021, 32(2): 161-170. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202102001.htm
    [4]
    FARRANT A R, COOPER A H. Karst geohazards in the UK: The use of digital data for hazard management[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 2008, 41(3): 339-356.
    [5]
    PAPADOPOULOU-VRYNIOTI K, BATHRELLOS G D, SKILODIMOU H D, et al. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area[J]. Engineering Geology, 2013, 158: 77-88. doi: 10.1016/j.enggeo.2013.02.009
    [6]
    MAO Z Y, JIAO Y Y, TAN F, et al. Susceptibility mapping of ground collapse caused by anthropogenic activities[J/OL]. Journal of Earth Science, https://new.cnki.net/kcms/detail/42.1788.P.20220307.1002.003.html
    [7]
    WHITE W B. Karst hydrology: Recent developments and open questions[J]. Engineering Geology, 2002, 65(2/3): 85-105.
    [8]
    FORD D C, WILLIAMS P W. Karst hydrogeology and geomorphology[M]. Chichester: Wiley, 2007.
    [9]
    HARTMANN A, GOLDSCHEIDER N, WAGENER T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
    [10]
    袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016.

    YUAN D X, JIANG Y J, SHEN L C, et al. Modern karstology[M]. Beijing: Science Press, 2016. (in Chinese)
    [11]
    徐亚东, 梁银平, 江尚松, 等. 中国东部新生代沉积盆地演化[J]. 地球科学, 2014, 39(8): 1079-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408011.htm

    XU Y D, LIANG Y P, JIANG S S, et al. Evolution of Cenozoic sedimentary basins in eastern China[J]. Earth Science, 2014, 39(8): 1079-1098. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408011.htm
    [12]
    张宗言, 何卫红, 韦一, 等. 下扬子中生代沉积盆地演化[J]. 地球科学, 2014, 39(8): 1017-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408007.htm

    ZHANG Z Y, HE W H, WEI Y, et al. Evolution of Mesozoic sedimentary basins in the Lower Yangtze[J]. Earth Science, 2014, 39(8): 1017-1034. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408007.htm
    [13]
    郑金云, 高阳东, 张向涛, 等. 珠江口盆地构造演化旋回及其新生代沉积环境变迁[J]. 地球科学, 2022, 47(7): 2374-2390. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202207007.htm

    ZHENG J Y, GAO Y D, ZHANG X T, et al. Tectonic evolution cycles and Cenozoic sedimentary environment changes in Pearl River Mouth Basin[J]. Earth Science, 2022, 47(7): 2374-2390. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202207007.htm
    [14]
    颜慧明, 常威, 郭绪磊, 等. 岩溶水流系统识别方法及其在引调水工程隧洞选线中的应用[J]. 地质科技通报, 2022, 41(1): 127-136. 10.19509/j.cnki.dzkq.2022.0008

    YAN H M, CHANG W, GUO X L, et al. Identification of the karst water flow system and its application in the tunnel line selection of water diversion projects[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 127-136. (in Chinese with English abstract) 10.19509/j.cnki.dzkq.2022.0008
    [15]
    颜慧明, 常威, 季怀松, 等. 黄陵背斜东北翼岩溶水系统特征及其对引调水隧洞工程的影响[J]. 地质科技通报, 2022, 41(5): 315-323. 10.19509/j.cnki.dzkq.2022.0165

    YAN H M, CHANG W, JI H S, et al. Characteristics of the karst water system on the northeast wing of the Huangling anticline and its impact on water diversion tunnel engineering[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 315-323. (in Chinese with English abstract) 10.19509/j.cnki.dzkq.2022.0165
    [16]
    马超, 曾斌, 罗明明, 等. 武汉两湖隧道岩溶水系统结构及水循环规律[J]. 地质科技通报, 2022, 41(5): 395-404. doi: 10.19509/j.cnki.dzkq.2022.0198

    MA C, ZENG B, LUO M M, et al. Structure of karst water system and hydrological circulation characteristics of Lianghu Tunnel in Wuhan[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 395-404. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0198
    [17]
    吴远斌, 刘之葵, 殷仁朝, 等. 湖南怀化盆地岩溶发育特征与分布规律[J]. 中国岩溶, 2022, 41(5): 759-772. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202205008.htm

    WU Y B, LIU Z K, YIN R C, et al. Karst development characteristics and distribution law in Huaihua Basin, Hunan Province[J]. Carsologica Sinica, 2022, 41(5): 759-772. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202205008.htm
    [18]
    尹欧, 何阳, 李彬, 等. 区域构造特征与岩溶发育空间分布关系研究: 以长沙市煤炭坝地区为例[J]. 地下水, 2021, 43(1): 114-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202101040.htm

    YIN O, HE Y, LI B, et al. Study on the relationship between regional tectonic framework and spatial distribution of karst: Taking the coal dam area of Changsha as an example[J]. Ground Water, 2021, 43(1): 114-116. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202101040.htm
    [19]
    樊燏, 常威, 魏世毅, 等. 聚龙山向斜三叠系含水层岩溶发育史及地下水流场控制意义[J]. 地质科技通报, 2022, 41(5): 377-385. 10.19509/j.cnki.dzkq.2022.0160

    FAN Y, CHANG W, WEI S Y, et al. History of karstification and groundwater flow field within Triassic water-bearing strata in Julongshan syncline[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 377-385. (in Chinese with English abstract) 10.19509/j.cnki.dzkq.2022.0160
    [20]
    雷明堂, 蒋小珍. 岩溶塌陷研究现状、发展趋势及其支撑技术方法[J]. 中国地质灾害与防治学报, 1998, 9(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199803000.htm

    LEI M T, JIANG X Z. Research on the present situation and developing tendency of karst collapse and techniques for its supporting[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(3): 1-6. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199803000.htm
    [21]
    BASSO A, BRUNO E, PARISE M, et al. Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy)[J]. Environmental Earth Sciences, 2013, 70(6): 2545-2559. doi: 10.1007/s12665-013-2297-z
    [22]
    KAUFMANN G, ROMANOV D. Structure and evolution of collapse sinkholes: Combined interpretation from physico-chemical modelling and geophysical field work[J]. Journal of Hydrology, 2016, 540: 688-698. doi: 10.1016/j.jhydrol.2016.06.050
    [23]
    罗小杰, 罗程. 岩溶地面塌陷三机理理论及其应用[J]. 中国岩溶, 2021, 40(2): 171-188. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102001.htm

    LUO X J, LUO C. Three-Mechanism Theory (TMT) of karst ground collapse and its application[J]. Carsologica Sinica, 2021, 40(2): 171-188. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202102001.htm
    [24]
    SALEM H S. Multi-and inter-disciplinary approaches towards understanding the sinkholes'phenomenon in the Dead Sea Basin[J]. SN Applied Sciences, 2020, 2(4): 667.
    [25]
    NAM B H, KIM Y J, YOUN H. Identification and quantitative analysis of sinkhole contributing factors in Florida's Karst[J]. Engineering Geology, 2020, 271: 105610.
    [26]
    FRUMKIN A, EZERSKY M, AL-ZOUBI A, et al. The dead sea sinkhole hazard: Geophysical assessment of salt dissolution and collapse[J]. Geomorphology, 2011, 134(1/2): 102-117.
    [27]
    SAMYN K, MATHIEU F, BITRI A, et al. Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orléans, France[J]. Engineering Geology, 2014, 183: 170-184.
    [28]
    CARBONEL D, RODRÍGUEZ-TRIBALDOS V, GUTIÉ-RREZ F, et al. Investigating a damaging buried sinkhole cluster in an urban area (Zaragoza City, NE Spain) integrating multiple techniques: Geomorphological surveys, DInSAR, DEMs, GPR, ERT, and trenching[J]. Geomorphology, 2015, 229: 3-16.
    [29]
    WANG X M, WANG S M, PENG X Y, et al. Equivalent numerical simulation method and application in karst-induced collapse of overlying sandy stratum[J]. Engineering Failure Analysis, 2022, 137: 106280.
    [30]
    武鑫, 王艺霖, 黄敬军, 等. 徐州地区碳酸盐岩溶蚀特征及影响因素分析[J]. 地质科技情报, 2019, 38(3): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903011.htm

    WU X, WANG Y L, HUANG J J, et al. Dissolution characteristics of carbonate and analysis of the key influence factors in Xuzhou region[J]. Geological Science and Technology Information, 2019, 38(3): 120-126. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903011.htm
    [31]
    中国科学院地质研究所岩溶研究组. 中国岩溶研究[M]. 北京: 科学出版社, 1979.

    Karst Research Group, Institute of Geology, Chinese Academy of Sciences. Karst Research in China[M]. Beijing: Science Press, 1979. (in Chinese)
    [32]
    何宇彬, 金玉璋, 李康. 碳酸盐岩溶蚀机理研究[J]. 中国岩溶, 1984, 3(2): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198402001.htm

    HE Y B, JIN Y Z, LI K. An experimental study of carbonate rock corrosion mechanism[J]. Carsologica Sinica, 1984, 3(2): 12-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198402001.htm
    [33]
    韩庆之, 梁杏, 曾克峰, 等. 碳酸盐岩可溶性室内研究[J]. 地质科技情报, 1998, 17(增刊2): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.018.htm

    HAN Q Z, LIANG X, ZENG K F, et al. Study on solubility of carbonate rock in door[J]. Geological Science and Technology Information, 1998, 17(S2): 102-106. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S2.018.htm
    [34]
    LUO M M, ZHOU H, LIANG Y P, et al. Horizontal and vertical zoning of carbonate dissolution in China[J]. Geomorphology, 2018, 322: 66-75.
    [35]
    陈如冰, 罗明明, 罗朝晖, 等. 三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J]. 中国岩溶, 2019, 38(2): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902014.htm

    CHEN R B, LUO M M, LUO Z H, et al. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges Area[J]. Carsologica Sinica, 2019, 38(2): 258-264. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902014.htm
    [36]
    南颐, 潘洪标, 水涛, 等. 广东1: 20万连县幅区域地质调查报告书[R]. 广州: 广东省地质局, 1973.

    NAN Y, PAN H B, SHUI T, et al. 1: 200000 regional geological survey report of Lianxian sheet in Guangdong Province[R]. Guangzhou: Guangdong Geological Bureau, 1973. (in Chinese)
    [37]
    广东省地质矿产局. 广东省区域地质志[M]. 北京: 地质出版社, 1988.

    Guangdong Bureau of Geology and Mineral Resources. Regional geology of Guangdong Province[M]. Beijing: Geological Publishing House, 1988. (in Chinese)
    [38]
    柏道远, 贾宝华, 钟响, 等. 湘东南印支运动变形特征研究[J]. 地质论评, 2012, 58(1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201002.htm

    BAI D Y, JIA B H, ZHONG X, et al. Study on the deformation of Indosinian movement in southeastern Hunan[J]. Geological Review, 2012, 58(1): 19-29. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201002.htm
    [39]
    褚杨, 林伟, FAURE M, 等. 华南板块早中生代陆内造山过程: 以雪峰山-九岭为例[J]. 岩石学报, 2015, 31(8): 2145-2155. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601003009.htm

    CHU Y, LIN W, FAURE M, et al. Early Mesozoic intracontinental orogeny: Example of the Xuefengshan-Jiuling belt[J]. Acta Petrologica Sinica, 2015, 31(8): 2145-2155. (in Chinese with English abstract) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601003009.htm
    [40]
    马永生, 陈洪德, 王国力, 等. 中国南方构造-层序岩相古地理图集[R]. 北京: 科学出版社, 2009.

    MA Y S, CHEN H D, WANG G L, et al. Tectonic-sequence lithofacies paleogeography atlas of southern China[R]. Beijing: Science Press, 2009. (in Chinese)
    [41]
    王清晨, 蔡立国. 中国南方显生宙大地构造演化简史[J]. 地质学报, 2007, 81(8): 1025-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708002.htm

    WANG Q C, CAI L G. Phanerozoic tectonic evolution of South China[J]. Acta Geologica Sinica, 2007, 81(8): 1025-1040. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708002.htm
    [42]
    LI J H, ZHANG Y Q, DONG S W, et al. Late Mesozoic-Early Cenozoic deformation history of the Yuanma Basin, central South China[J]. Tectonophysics, 2012, 570/571: 163-183.
    [43]
    高中亮, 王艳飞, 雷胜兰, 等. 珠江口盆地CO2分布特征与成藏机制浅析[J]. 地质科技通报, 2022, 41(4): 57-68. doi: 10.19509/j.cnki.dzkq.2022.0204

    GAO Z L, WANG Y F, LEI S L, et al. Distribution characteristics and accumulation mechanism of carbon dioxide gas reservoirs in the Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 57-68. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0204
    [44]
    陈佩蓉, 许中杰, 孔锦涛, 等. 闽西南地区中侏罗世古气候演化及其对华南构造体制转换的响应[J]. 大地构造与成矿学, 2020, 44(5): 1012-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202005015.htm

    CHEN P R, XU Z J, KONG J T, et al. Paleoclimatic evolution during Middle Jurassic in southwestern Fujian and its responses to the tectonic regime transition in South China[J]. Geotectonica et Metallogenia, 2020, 44(5): 1012-1024. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202005015.htm
    [45]
    HU R L, YEUNG M R, LEE C F, et al. Regional risk assessment of karst collapse in Tangshan, China[J]. Environmental Geology, 2001, 40(11/12): 1377-1389.
    [46]
    董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11): 1449-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm

    DONG S H, ZHANG Y Q, LONG C X, et al. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 2007, 81(11): 1449-1461. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm
    [47]
    SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3/4): 212-270.
    [48]
    DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
    [49]
    DONG Y P, YANG Z, LIU X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016, 30: 144-158.
    [50]
    贾磊. 粤西北连州地区印支-燕山运动变形特征研究[J]. 西部资源, 2017, 3: 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201703011.htm

    JIA L. Study on the deformation of Indosinian to Yanshanian Movement in Lianzhou, Northwest Guangdong[J]. Western Resources, 2017, 3: 23-25. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY201703011.htm
    [51]
    HU G, HU W X, CAO J, et al. Deciphering the Early Cretaceous transgression in coastal southeastern China: Constraints based on petrography, paleontology and geochemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317/318: 182-195.
    [52]
    LI J H, CAWOOD P A, RATSCHBACHER L, et al. Building Southeast China in the Late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 2020, 201: 103056.
    [53]
    ZHOU X M, LI W X. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3/4): 269-287.
    [54]
    何岸北. 东南沿海古海岸山脉演化: 永安盆地晚中生代沉积及古气候响应[D]. 广州: 中国科学院广州地球化学研究所, 2022: 53-88.

    HE A B. Evolution of paleo-coastal mountains along the southeast coast: Sedimentation and paleoclimate response in Yong'an Basin of the Late Mesozoic[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2022: 53-88. (in Chinese with English abstract)
    [55]
    王文艳, 刘秀铭, 马明明, 等. 南雄盆地白垩纪红层沉积环境分析[J]. 亚热带资源与环境学报, 2016, 11(3): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDL201603005.htm

    WANG W Y, LIU X M, MA M M, et al. Sedimentary environment of Cretaceous red beds in Nanxiong Basin, Guangdong Province[J]. Journal of Subtropical Resources and Environment, 2016, 11(3): 29-37. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-FJDL201603005.htm
    [56]
    许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm

    XU Z Q, WANG Q, LI Z H, et al. Indo-Asian collision: Tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 2016, 90(1): 1-23. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
    [57]
    谢树鑫, 罗建鸿, 黄录太, 等. 广东1: 20万连县幅区域水文地质普查报告书[R]. 广州: 广东省地质局, 1981.

    XIE S X, LUO J H, HUANG L T, et al. 1: 200000 regional hydrogeologic survey report of Lianxian sheet in Guangdong Province[R]. Guangzhou: Guangdong Geological Bureau, 1981. (in Chinese)
    [58]
    WANG Y, WANG Y J, LI S B, et al. Exhumation and landscape evolution in eastern South China since the Cretaceous: New insights from fission-track thermochronology[J]. Journal of Asian Earth Sciences, 2020, 191: 104239.
    [59]
    CLIFT P D, BLUSZTAJN J, NGUYEN A D. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam[J]. Geophysical Research Letters, 2006, 33(19): L19403.
    [60]
    闫义, ALI A A A, 田陟贤, 等. 南海北缘盆-岭格局及地貌演化过程[J]. 热带海洋学报, 2016, 35(6): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201606006.htm

    YAN Y, ALI A A A, TIAN Z X, et al. Basin-mountain evolution, thermo-tectonic history and surface crustal recycling processes of the northern margin of the South China Sea[J]. Journal of Tropical Oceanography, 2016, 35(6): 46-57. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201606006.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(224) PDF Downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return