Volume 42 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Yao Meng, Yu Shengchao, Zhang Kexin, Li Hailong. Research progress on coastal groundwater flow and solute transport processes based on MARUN[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 170-182. doi: 10.19509/j.cnki.dzkq.tb20230131
Citation: Yao Meng, Yu Shengchao, Zhang Kexin, Li Hailong. Research progress on coastal groundwater flow and solute transport processes based on MARUN[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 170-182. doi: 10.19509/j.cnki.dzkq.tb20230131

Research progress on coastal groundwater flow and solute transport processes based on MARUN

doi: 10.19509/j.cnki.dzkq.tb20230131
  • Received Date: 10 Mar 2023
  • Accepted Date: 13 Apr 2023
  • Rev Recd Date: 12 Apr 2023
  • Sgnificance

    To quantitatively study the impact of various nonlinear factors in the coastal zone on groundwater flow and solute transport processes, MARUN (Marine Unsaturated) software for simulating groundwater flow in the coastal zone was developed.

    Progress

    This paper reviews the research and application progress of MARUN from the aspects of model principles, algorithm characteristics, literature review, and case analyses. The software is suitable for numerical simulations of two-dimensional vertical profiles of groundwater flow and solute transport reactions in the coastal zone. MARUN implements a finite element algorithm for variable saturation and density flow and solute transport, mass-consistent implicit difference discretization, and Picard, Newton, and Newton-Picard numerical solution methods, covering many nonlinear factors such as tides, waves, evaporation, rainfall, and load effects. It is characterized by its high professionalism, good flexibility, and high fault tolerance, but it does not have a graphical user interface. MARUN has achieved a number of highlighted research results in scenarios such as bioremediation of crude oil pollution on beaches, seawater-groundwater circulation processes in shallow aquifers in intertidal zones, and the evolution of regional groundwater flow systems.

    Conclusion and Prospects

    In the future, MARUN needs to be further expanded into three-dimensional space and coupled with physicochemical processes with random characteristics to improve its performance level of simulating groundwater flow and solute transport in coastal aquifers.

     

  • loading
  • [1]
    Beatley T, Brower D, Schwab A K. An introduction to coastal zone management[M]. Washington: Island Press, 2002.
    [2]
    Dominguez J M L. The coastal zone of Brazil: An overview[J]. Journal of Coastal Research, 2006, 39(1): 16-20.
    [3]
    Sun Z, Sun W, Tong C, et al. China's coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement[J]. Environment International, 2015, 79: 25-41. doi: 10.1016/j.envint.2015.02.017
    [4]
    Howarth R W. Coastal nitrogen pollution: A review of sources and trends globally and regionally[J]. Harmful Algae, 2008, 8(1): 14-20. doi: 10.1016/j.hal.2008.08.015
    [5]
    Santos I R, Chen X, Lecher A L, et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry[J]. Nature Reviews Earth & Environment, 2021, 2(5): 307-323.
    [6]
    Jiang T T, Pan J F, Pu X M, et al. Current status of coastal wetlands in China: Degradation, restoration, and future management[J]. Estuarine, Coastal and Shelf Science, 2015, 164: 265-275. doi: 10.1016/j.ecss.2015.07.046
    [7]
    Zhang Y, Li H, Wang X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn[J]. Journal of Hydrology, 2016, 533: 103-113. doi: 10.1016/j.jhydrol.2015.11.027
    [8]
    Kang Y, Liu Q, Cheng Y, et al. Combined freeze-sealing and New Tubular Roof construction methods for seaside urban tunnel in soft ground[J]. Tunnelling and Underground Space Technology, 2016, 58: 1-10. doi: 10.1016/j.tust.2016.04.001
    [9]
    王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10. doi: 10.19509/j.cnki.dzkq.2020.0101

    Wang Y X, Gan Y Q, Deng Y M, et al. Land-ocean interactions, and their eco-environmental effects in the coastal zone: Current progress and future perspectives[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 1-10 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0101
    [10]
    易泽邦, 刘千红, 曹建劲, 等. 广州珠江三角洲海水入侵地区地下水微粒的TEM分析及意义[J]. 地质科技情报, 2015, 34(4): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504029.htm

    Yi Z B, Liu Q H, Cao J J, et al. TEM analysis of groundwater microparticles in the Pearl River Delta of Guangzhou and its significance[J]. Geological Science and Technology Information, 2015, 34(4): 194-199 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504029.htm
    [11]
    Anderson M, Woessner W, Hunt R. Applied groundwater modeling: Simulation of flow and advective transport[J]. Journal of Hydrology, 1992, 140: 393-395. doi: 10.1016/0022-1694(92)90251-P
    [12]
    Anderson M P, Woessner W W, Hunt R J. Applied groundwater modeling: Simulation of flow and advective transport[M]. Amsterdam: Elsevier Press, 2015.
    [13]
    Kresic N. Hydrogeology and groundwater modeling[M]. Boca Raton: CRC Press, 2006.
    [14]
    Harbaugh A W, Banta E R, Hill M C, et al. MODFLOW-2000, The U.S. Geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process[M]. Colorado: U.S. Geological Survey, 2000.
    [15]
    Zheng C C, Hill M, Cao G, et al. MT3DMS: Model use, calibration, and validation[J]. Transactions of the ASABE, 2012, 55(4): 1549-1559. doi: 10.13031/2013.42263
    [16]
    Appelo C A J, Rolle M. PHT3D: A reactive multicomponent transport model for saturated porous media[J]. Groundwater, 2010, 48(5): 627-632. doi: 10.1111/j.1745-6584.2010.00732.x
    [17]
    Langevin C D. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density groundwater flow[R]. Techniques of Water-Resources Investigations 6-A7. Tallahassee: U.S. Geological Survey, 2002.
    [18]
    Xiao B Z. The software (GMS) of groundwater modeling system[J]. Hydrogeology and Engineering Geology, 2003, 5: 53-55.
    [19]
    Trefry M G, Muffels C. FEFLOW: A finite-element ground water flow and transport modeling tool[J]. Groundwater, 2007, 45(5): 525-528. doi: 10.1111/j.1745-6584.2007.00358.x
    [20]
    Diersch H J G. FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media[M]. Berlin: Springer Press, 2014.
    [21]
    Provost A M, Voss C I. SUTRA, a model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport: Documentation of generalized boundary conditions, a modified implementation of specified pressures and concentrations or temperatures, and the lake capability[R]. Techniques and Methods 6-A52, Reston: U.S. Geological Survey, 2019.
    [22]
    Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. Techniques and Methods 6-A43, Denver: U.S. Geological Survey, 2013.
    [23]
    Croucher A E, O'Sullivan M J. Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems[J]. Geothermics, 2008, 37(6): 622-634. doi: 10.1016/j.geothermics.2008.03.005
    [24]
    Brunner P, Simmons C T. HydroGeoSphere: A fully integrated, physically based hydrological model[J]. Groundwater, 2012, 50(2): 170-176. doi: 10.1111/j.1745-6584.2011.00882.x
    [25]
    Boufadel M C. Nutrient transport in beaches: Effect of tides, waves, and buoyancy[D]. Cincinnati: University of Cincinnati, 1998.
    [26]
    Boufadel M C, Suidan M T, Venosa A D. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media[J]. Journal of Contaminant Hydrology, 1999, 37(1/2): 1-20.
    [27]
    Xiao K, Wilson A M, Li H, et al. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: A modeling study[J]. Advances in Water Resources, 2019, 132: 103408. doi: 10.1016/j.advwatres.2019.103408
    [28]
    Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [29]
    Van Der Kamp G, Gale J E. Theory of earth tide and barometric effects in porous formations with compressible grains[J]. Water Resources Research, 1983, 19(2): 538-544. doi: 10.1029/WR019i002p00538
    [30]
    Li H, Li L, Lockington D. Aeration for plant root respiration in a tidal marsh[J]. Water Resources Research, 2005, 41(6): W06023.
    [31]
    Xiao K, Li H, Wilson A M, et al. Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river[J]. Journal of Hydrology, 2017, 555: 198-212. doi: 10.1016/j.jhydrol.2017.10.025
    [32]
    Spiteri C, Cappellen P V, Regnier P. Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3431-3445. doi: 10.1016/j.gca.2008.05.003
    [33]
    Spiteri C, Slomp C P, Charette M A, et al. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3398-3412. doi: 10.1016/j.gca.2008.04.027
    [34]
    Spiteri C, Slomp C P, Tuncay K, et al. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients[J]. Water Resources Research, 2008, 44(2): W02430.
    [35]
    Cooley R L. Some new procedures for numerical solution of variably saturated flow problems[J]. Water Resources Research, 1983, 19(5): 1271-1285. doi: 10.1029/WR019i005p01271
    [36]
    Neuman S P. Saturated-unsaturated seepage by finite elements[J]. Journal of the Hydraulics Division, 1973, 99(12): 2233-2250. doi: 10.1061/JYCEAJ.0003829
    [37]
    Huyakorn P S, Thomas S D, Thompson B M. Techniques for making finite elements competitve in modeling flow in variably saturated porous media[J]. Water Resources Research, 1984, 20(8): 1099-1115. doi: 10.1029/WR020i008p01099
    [38]
    Huyakorn P S, Springer E P, Guvanasen V, et al. A three-dimensional finite-element model for simulating water flow in variably saturated porous media[J]. Water Resources Research, 1986, 22(13): 1790-1808. doi: 10.1029/WR022i013p01790
    [39]
    Gureghian A B. TRIPM: Two-dimensional finite-element model for the simultaneous transport of water and reacting solutes through saturated and unsaturated porous media: Technical report[R]. [S. l. ]: Battelle Memorial Institute, Office of Nuclear Waste Isolation, 1983.
    [40]
    Voss C I. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport[R]. Water-Resources Invectigations Report 84-4389, Reston: U.S. Geological Survey, 1984.
    [41]
    Anderson D, Tannehill J C, Pletcher R H. Computational fluid mechanics and heat transfer[M]. Boca Raton: CRC Press, 2012.
    [42]
    Celia M A, Bouloutas E T, Zarba R L. A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26(7): 1483-1496. doi: 10.1029/WR026i007p01483
    [43]
    Gureghian A B. A two-dimensional finite-element solution for the simultaneous transport of water and nultisolutes trough a nonhomogeneous aquifer under transient saturted-unsaturated flow conditions[J]. Science of the Total Environment, 1981, 21: 329-337. doi: 10.1016/0048-9697(81)90166-2
    [44]
    Kinzelbach W. Groundwater modelling: An introduction with sample programs in BASIC[M]. Ansterdan: Elsevier Press, 1986.
    [45]
    Huang K, Mohanty B P, vanGenuchten M T. A new convergence criterion for the modified Picard iteration method to solve the variably saturated flow equation[J]. Journal of Hydrology, 1996, 178(1/4): 69-91.
    [46]
    Huang K, Mohanty B P, Leij F J, et al. Solution of the nonlinear transport equation using modified Picard iteration[J]. Advances in Water Resources, 1998, 21(3): 237-249. doi: 10.1016/S0309-1708(96)00046-2
    [47]
    Paniconi C, Putti M. A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems[J]. Water Resources Research, 1994, 30(12): 3357-3374. doi: 10.1029/94WR02046
    [48]
    Putti M, Paniconi C. Picard and Newton linearization for the coupled model for saltwater intrusion in aquifers[J]. Advances in Water Resources, 1995, 18(3): 159-170. doi: 10.1016/0309-1708(95)00006-5
    [49]
    Bergamaschi L, Putti M. Mixed finite elements and Newton-type linearizations for the solution of Richards' equation[J]. International Journal for Numerical Methods in Engineering, 1999, 45(8): 1025-1046. doi: 10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G
    [50]
    Maurer D, Wieners C. A parallel block LU decomposition method for distributed finite element matrices[J]. Parallel Computing, 2011, 37(12): 742-758. doi: 10.1016/j.parco.2011.05.007
    [51]
    Koniges A E, Anderson D V. ILUBCG2: A preconditioned biconjugate gradient routine for the solution of linear asymmetric matrix equations arising from 9-point discretizations[J]. Computer Physics Communications, 1987, 43(2): 297-302. doi: 10.1016/0010-4655(87)90213-X
    [52]
    Wang W, Dai Z, Li J, et al. A hybrid Laplace transform finite analytic method for solving transport problems with large Peclet and Courant numbers[J]. Computers & Geosciences, 2012, 49: 182-189.
    [53]
    Boufadel M C. A mechanistic study of nonlinear solute transport in a groundwater-surface water system under steady state and transient hydraulic conditions[J]. Water Resources Research, 2000, 36(9): 2549-2565. doi: 10.1029/2000WR900159
    [54]
    Qu W, Li H, Wan L, et al. Numerical simulations of steady-state salinity distribution and submarine groundwater discharges in homogeneous anisotropic coastal aquifers[J]. Advances in Water Resources, 2014, 74: 318-328. doi: 10.1016/j.advwatres.2014.10.009
    [55]
    Geng X, Boufadel M C, Rajaram H, et al. Numerical study of solute transport in heterogeneous beach aquifers subjected to tides[J]. Water Resources Research, 2020, 56(3): e2019WR026430.
    [56]
    Li H, Boufadel M C. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches[J]. Nature Geoscience, 2010, 3(2): 96-99. doi: 10.1038/ngeo749
    [57]
    Wang X, Li H, Wan L, et al. Loading effect of water table variation and density effect on tidal head fluctuations in a coastal aquifer system[J]. Water Resources Research, 2012, 48(9): W09501.
    [58]
    Geng X, Boufadel M C, Xia Y, et al. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach[J]. Journal of Contaminant Hydrology, 2014, 165: 37-52. doi: 10.1016/j.jconhyd.2014.07.001
    [59]
    Geng X, Boufadel M C. Impacts of evaporation on subsurface flow and salt accumulation in a tidally influenced beach[J]. Water Resources Research, 2015, 51(7): 5547-5565. doi: 10.1002/2015WR016886
    [60]
    Geng X, Boufadel M C. The influence of evaporation and rainfall on supratidal groundwater dynamics and salinity structure in a sandy beach[J]. Water Resources Research, 2017, 53(7): 6218-6238. doi: 10.1002/2016WR020344
    [61]
    Yu S, Jiao J J, Luo X, et al. Evolutionary history of the groundwater system in the Pearl River Delta during the Holocene[J]. Geology, 2023, 51(5): 481-485. doi: 10.1130/G50888.1
    [62]
    Boufadel M C, Suidan M T, Venosa A D. Density-dependent flow in one-dimensional variably-saturated media[J]. Journal of Hydrology, 1997, 202(1/4): 280-301.
    [63]
    Boufadel M C, Suidan M T, Venosa A D, et al. 2D variably saturated flows: Physical scaling and Bayesian estimation[J]. Journal of Hydrologic Engineering, 1998, 3(4): 223-231. doi: 10.1061/(ASCE)1084-0699(1998)3:4(223)
    [64]
    Boufadel M C, Suidan M T, Venosa A D, et al. Steady seepage in trenches and dams: Effect of capillary flow[J]. Journal of Hydraulic Engineering, 1999, 125(3): 286-294. doi: 10.1061/(ASCE)0733-9429(1999)125:3(286)
    [65]
    Boufadel M, Suidan M, Venosa A. Numerical modeling of water flow below dry salt lakes: Effect of capillarity and viscosity[J]. Journal of Hydrology, 1999, 221(1/2): 55-74.
    [66]
    Li H, Zhao Q, Boufadel M C, et al. A universal nutrient application strategy for the bioremediation of oil-polluted beaches[J]. Marine Pollution Bulletin, 2007, 54(8): 1146-1161. doi: 10.1016/j.marpolbul.2007.04.015
    [67]
    Li H, Boufadel M C, Weaver J W. Quantifying bank storage of variably saturated aquifers[J]. Groundwater, 2008, 46(6): 841-850.
    [68]
    Guo Q, Li H, Zhou Z, et al. Rainfall infiltration-derived submarine groundwater discharge from multi-layered aquifer system terminating at the coastline[J]. Hydrological Processes, 2012, 26(7): 985-995. doi: 10.1002/hyp.8188
    [69]
    Geng X, Boufadel M C. Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation[J]. Journal of Hydrology, 2015, 524: 427-438. doi: 10.1016/j.jhydrol.2015.02.046
    [70]
    Abdollahi-Nasab A, Boufadel M C, Li H, et al. Saltwater flushing by freshwater in a laboratory beach[J]. Journal of Hydrology, 2010, 386(1/4): 1-12.
    [71]
    Boufadel M C, Xia Y, Li H. Modeling solute transport and transient seepage in a laboratory beach under tidal influence[J]. Environmental Modelling & Software, 2011, 26(7): 899-912.
    [72]
    Geng X, Boufadel M C, Lee K, et al. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry[J]. Water Resources Research, 2015, 51(5): 3193-3218. doi: 10.1002/2014WR016870
    [73]
    Geng X, Boufadel M C. Numerical study of solute transport in shallow beach aquifers subjected to waves and tides[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 1409-1428. doi: 10.1002/2014JC010539
    [74]
    Xia Y, Li H, Boufadel M C, et al. Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach[J]. Water Resources Research, 2010, 46(10): W10528.
    [75]
    Guo Q, Li H, Boufadel M C, et al. Hydrodynamics in a gravel beach and its impact on the Exxon Valdez oil[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12077.
    [76]
    Li H, Boufadel M C. A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil[J]. Marine Pollution Bulletin, 2011, 62(6): 1261-1269. doi: 10.1016/j.marpolbul.2011.03.011
    [77]
    Guo Q, Li H, Boufadel M C, et al. A field experiment and numerical modeling of a tracer at a gravel beach in Prince William Sound, Alaska[J]. Hydrogeology Journal, 2014, 22(8): 1795-1805. doi: 10.1007/s10040-014-1184-3
    [78]
    Geng X, Boufadel M, Abdollahi-Nasab A. Hydrodynamics in a sandy beach polluted with the Deepwater Horizon oil spill[C]//Patterson C L, Struck S D, Murray J D J. Proceedings of the world environmental and water resources congress. Reston: American Society of Civil Engineers, 2013: 460-467.
    [79]
    Geng X, Pan Z, Boufadel M C, et al. Simulation of oil bioremediation in a tidally influenced beach: Spatiotemporal evolution of nutrient and dissolved oxygen[J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2385-2404. doi: 10.1002/2015JC011221
    [80]
    Geng X, Boufadel M C. Modeling biodegradation of subsurface oil in sand beaches polluted with oil[C]//Miller E J. Proceedings of the International Oil Spill Conference Proceedings of the international oil spill conference. Washington: American Petroleum Institute, 2014: 1113-1125.
    [81]
    Geng X, Boufadel M C, Jackson N L. Evidence of salt accumulation in beach intertidal zone due to evaporation[J]. Scientific Reports, 2016, 6(1): 1-5. doi: 10.1038/s41598-016-0001-8
    [82]
    Geng X, Heiss J W, Michael H A, et al. Subsurface flow and moisture dynamics in response to swash motions: Effects of beach hydraulic conductivity and capillarity[J]. Water Resources Research, 2017, 53(12): 10317-10335. doi: 10.1002/2017WR021248
    [83]
    Xiao K, Li H, Xia Y, et al. Effects of tidally varying salinity on groundwater flow and solute transport: insights from modelling an idealized creek marsh aquifer[J]. Water Resources Research, 2019, 55(11): 9656-9672. doi: 10.1029/2018WR024671
    [84]
    Bragg J R, Prince R C, Harner E J, et al. Effectiveness of bioremediation for the Exxon Valdez oil spill[J]. Nature, 1994, 368(6470): 413-418. doi: 10.1038/368413a0
    [85]
    Hayes M O, Michel J. Factors determining the long-term persistence of Exxon Valdez oil in gravel beaches[J]. Marine Pollution Bulletin, 1999, 38(2): 92-101. doi: 10.1016/S0025-326X(99)00099-5
    [86]
    Short J W, Lindeberg M R, Harris P M, et al. Estimate of oil persisting on the beaches of prince william sound 12 years after the Exxon Valdez oil spill[J]. Environmental Science & Technology, 2004, 38(1): 19-25.
    [87]
    Short J W, Maselko J M, Lindeberg M R, et al. Vertical distribution and probability of encountering intertidal Exxon Valdez oil on shorelines of Three Embayments within Prince William Sound, Alaska[J]. Environmental Science & Technology, 2006, 40(12): 3723-3729.
    [88]
    Short J W, Irvine G V, Mann D H, et al. Slightly weathered Exxon Valdez oil persists in Gulf of Alaska beach sediments after 16 gears[J]. Environmental Science & Technology, 2007, 41(4): 1245-1250.
    [89]
    Yeh G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534.
    [90]
    Neuman Shlomo P. Saturated-unsaturated seepage by finite elements[J]. Journal of the Hydraulics Division, 1973, 99(12): 2233-2250.
    [91]
    Naba B, Boufadel M C, Weaver J. The role of capillary forces in steady-state and transient seepage flows[J]. Groundwater, 2002, 40(4): 407-415.
    [92]
    Li H, Boufadel M C, Weaver J W. Tide-induced seawater–groundwater circulation in shallow beach aquifers[J]. Journal of Hydrology, 2008, 352(1/2): 211-224.
    [93]
    Massel S R. Hydrodynamics of coastal zones[M]. Amsterdam: Elsevier Press, 1989.
    [94]
    Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: A synthesis[J]. Marine Geology, 1984, 56(1/4): 93-118.
    [95]
    Geng X, Heiss J W, Michael H A, et al. Geochemical fluxes in sandy beach aquifers: Modulation due to major physical stressors, geologic heterogeneity, and nearshore morphology[J]. Earth-Science Reviews, 2021, 221: 103800.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(471) PDF Downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return