Volume 42 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Wang Bijin, Bao Hanyong, Liu Haotian, Zhang Li, Zhao Shuai. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area, eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 70-81. doi: 10.19509/j.cnki.dzkq.tb20230149
Citation: Wang Bijin, Bao Hanyong, Liu Haotian, Zhang Li, Zhao Shuai. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area, eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 70-81. doi: 10.19509/j.cnki.dzkq.tb20230149

Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area, eastern Sichuan Basin

doi: 10.19509/j.cnki.dzkq.tb20230149
  • Received Date: 21 Mar 2023
  • Accepted Date: 28 Apr 2023
  • Rev Recd Date: 27 Mar 2023
  • Objective

    The organic-rich shale of the Upper Permian Wujiaping Formation in the Hongxing area of eastern Sichuan is an important replacement area for shale gas exploration in the Sichuan Basin, and the exploration breakthroughs have been made. But how to achieve large-scale storage increase and efficient development needs to be tackled.

    Methods

    This paper investigates the source and reservoir quality characteristics of the shale of the Wujiaping Formation in the Hongxing area of eastern Sichuan based on lithological, geochemical and gas-bearing test and analysis data and discusses the factors controlling the development of high-quality reservoirs.

    Results

    The results show that the shale of the Wujiaping Formation has a good organic matter type, dominated by type Ⅱ1 kerogen, with high TOC content, high carbonate content and high gas content. The shale TOC content generally ranges from 1% to 11%, with an average value of 6.89%; the lithology is mainly siliceous shale and mixed shale, followed by calcareous shale, and the overall brittle mineral content is high; the reservoir organic matter pores are developed and have good physical properties, and the porosity generally ranges from 2% to 5%, with an average value of 3.1%. Comprehensive analysis shows that the high-quality reservoir of the Wujiaping Formation is strictly controlled by the depositional environment. The reservoir pore type is dominated by organic pores.

    Conclusion

    Under the control of this depositional model, sea level rise and fall, volcanic activity and palaeoclimate have jointly controlled the inhomogeneity and high-quality shale reservior distribution.

     

  • loading
  • [1]
    邹才能, 赵群, 从连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm

    Zou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
    [2]
    张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. doi: 10.3787/j.issn.1000-0976.2021.08.007

    Zhang J C, Shi M, Wang D S, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.007
    [3]
    聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm

    Nie H K, He Z L, Liu G X, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm
    [4]
    陈建平, 李伟, 倪云燕, 等. 四川盆地二叠系烃源岩及其天然气勘探潜力(一): 烃源岩空间分布特征[J]. 天然气工业, 2018, 38(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201806009.htm

    Chen J P, Li W, Ni Y Y, et al. The Permian source rocks in the Sichuan Basin and its natural gas exploration potential (Part 1): Spatial distribution of source rocks[J]. Natural Gas Industry, 2018, 38(5): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201806009.htm
    [5]
    腾格尔, 秦建中, 附小东, 等. 川东北地区上二叠统吴家坪组烃源岩评价[J]. 古地理学报, 2010, 12(3): 234-245. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201304005.htm

    Tenger, Qin J Z, Fu X D, et al. Hydrocarbon source rocks evaluation of the Upper Permian Wujiaping Formation in northeastern Sichuan area[J]. Journal of Palaeogeography, 2010, 12(3): 234-245(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201304005.htm
    [6]
    张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016

    Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0016
    [7]
    胡德高, 周林, 包汉勇, 等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报, 2023, 44(2): 241-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202302002.htm

    Hu D G, Zhou L, Bao H Y, et al. Breakthrough and significance of Permian shale gas exploration of Well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202302002.htm
    [8]
    王鹏威, 刘忠宝, 李雄, 等. 川东红星地区上二叠统吴家坪组页岩发育特征及其页岩气富集意义[J]. 石油与天然气地质, 2022, 43(5): 1102-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205008.htm

    Wang P W, Liu Z B, Li X, et al. Development of the Upper Permian Wujiaping shale in Hongxing area, eastern Sichuan Basin, and its significance to shale gas enrichment[J]. Oil & Gas Geology, 2022, 43(5): 1102-1114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205008.htm
    [9]
    罗立志, 孙玮, 韩建辉, 等. 峨眉地幔柱对中上扬子区二叠纪成藏条件影响的探讨[J]. 地学前缘, 2012, 19(6): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206019.htm

    Luo L Z, Sun W, Han J H, et al. Effect of Emei mantle plume on the conditions of Permian accumulation in middle-upper Yangtze area[J]. Earth Science Frontiers, 2012, 19(6): 144-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206019.htm
    [10]
    朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201005.htm

    Zhu Y M, Gu S X, Li Y, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan Basin[J]. Geochimica, 2012, 41(1): 35-44(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201005.htm
    [11]
    何治亮, 聂海宽, 李双建, 等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质, 2021, 42(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101002.htm

    He Z L, Nie H K, Li S J, et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtz region constrained by plate tectonics in the Tethyan Domain[J]. Oil & Gas Geology, 2021, 42(1): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101002.htm
    [12]
    高平, 李双建, 何治亮, 等. 四川盆地广元-梁平古裂陷构造-沉积演化[J]. 石油与天然气地质, 2020, 41(4): 784-799. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004013.htm

    Geo P, Li S J, He Z L, et al. Tectonic-sedimentary evolution of Guangyuan-Liangping paleo-rift in Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 784-799(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004013.htm
    [13]
    Cole G A. Graptolite-Chitinozoan reflectance and its relationship to other geochemical maturity indicators in the Silurian Qusaiba shale, Saudi Arabia[J]. Energy and Fuels, 1994, 8(6): 1443-1459.
    [14]
    Sawaki Y, Shibuya T, Kawai T, et al. Imbricated ocean-plate stratigraphy and U-Pb zircon ages from tuff beds in cherts in the Ballantrae complex, SW Scotland[J]. GSA Bulletin, 2010, 122(3/4): 454-464.
    [15]
    Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/4): 229-273.
    [16]
    Eagle M, Paytan A, Arrigo K R, et al. A comparison between excessbarium and barite as indicators of carbon export[J]. Paleoceanography, 2003, 18(1): 2101-2113.
    [17]
    周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233

    Zhou L H, Chen C W, Gan H J, et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0233
    [18]
    梁霄, 马韶光, 李郭琴, 等. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力: 以四川盆地威远地区威207井为例[J]. 地质科技通报, 2022, 41(5): 68-82. doi: 10.19509/j.cnki.dzkq.2022.0159

    Liang X, Ma S G, Li G Q, et al. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0159
    [19]
    Gallego-Torres D, Martinez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/4): 424-439.
    [20]
    Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: Enhanced productivity and/or better preservation[J]. Cretac. Res., 2007, 28(8): 597-612.
    [21]
    Jin C S, Li C, Algeo T J, et al. Controls on organic matter accumulation on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2020, 111(1): 75-87.
    [22]
    Wang N, Li M J, Tian X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in Lower Cambrian black shale in the upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120(10): 104570.
    [23]
    Chen L, Zhang B M, Chen X H, et al. Depositional environment and organic matter accumulation of the Lower Cambrian Shuijingtuo Formation in the middle Yangtze area, China[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109339.
    [24]
    包汉勇, 赵帅, 梁榜, 等. 川东红星地区二叠系吴家坪组页岩气富集高产主控因素与勘探启示[J]. 中国石油勘探, 2023, 28(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202301007.htm

    Bao H Y, Zhao S, Liang B, et al. Enrichment and high yield of shale gas in the Permian Wujiaping Formation in Hongxing area of eastern Sichuan and its exploration implications[J]. China Petroleum Exploration, 2023, 28(1): 71-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202301007.htm
    [25]
    尹赞勋, 徐道一, 浦庆余, 等. 中国地壳运动名称资料汇编[J]. 地质论评, 1965, 23(增刊): 20-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1965S1003.htm

    Yin Z X, Xu D Y, Pu Q Y, et al. Compilation of names of crustal movements in China[J]. Geological Review, 1965, 23(S): 20-81(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1965S1003.htm
    [26]
    胡世忠. 论东吴运动构造事件与二叠系分统界线问题[J]. 地层学杂志, 1994, 18(4): 309-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ404.015.htm

    Hu S Z. On the event of Dongwu Movement and its relation with Permian subdivision[J]. Journal of Stratigraphy, 1994, 18(4): 309-315(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ404.015.htm
    [27]
    何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm

    He D F, Li D S, Zhang G W, et al. Formation and evolution of multi-cycle superimposed basins in Sichuan, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm
    [28]
    刘树根, 孙玮, 钟勇, 等. 四川海相克拉通盆地显生宙演化阶段及其特征[J]. 岩石学报, 2017, 33(4): 1058-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704004.htm

    Liu S G, Sun W, Zhong Y, et al. Evolutionary episodes and their characteristics within the Sichuan marine craton basin during Phanerozoic Eon, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1058-1072(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201704004.htm
    [29]
    梁新权, 周云, 蒋英, 等. 二叠纪东吴运动的沉积响应差异: 来自扬子和华夏板块吴家坪组或龙潭组碎屑锆石LA-ICPMS U-Pb年龄研究[J]. 岩石学报, 2013, 29(10): 3592-3606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310022.htm

    Liang X Q, Zhou Y, Jiang Y, et al. Difference of sedimentary response to Dongwu Movement: Study on LA-ICPMS U-Pb ages of detrital zircons from Upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia Blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310022.htm
    [30]
    刘光祥, 金之钧, 邓模, 等. 川东地区上二叠统龙潭组页岩气勘探潜力[J]. 石油与天然气地质, 2015, 36(3): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503019.htm

    Liu G X, Jin Z J, Deng M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(3): 481-487(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503019.htm
    [31]
    吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组-龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm

    Wu L Y, Hu D F, Lu Y C, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602005.htm
    [32]
    Yang R, Hao F, He S, et al. Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales[J]. Marine and Petroleum Geology, 2017, 84(6): 225-242.
    [33]
    Wang T, Hu D, Jia A, et al. Characteristics and influencing factors of supercritical methane adsorption in deep gas shale: A case study of marine Wufeng and Longmaxi Formations from the Dongxi area, southeastern Sichuan Basin (China)[J]. Energy & Fuels, 2022, 36(3): 1531-1546.
    [34]
    李艳芳, 吕海刚, 张瑜, 等. 四川盆地五峰组-龙马溪组页岩U-Mo协变模式与古海盆水体滞留程度的判识[J]. 地球化学, 2015, 44(2): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502001.htm

    Li Y F, Lü H G, Zhang Y, et al. U-Mo covariation in marine shales of Wufeng-Longmaxi Formation in Sichuan Basin, China and its implication for identification of watermass restriction[J]. Geochimica, 2015, 44(2): 109-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502001.htm
    [35]
    陆扬博, 马义权, 王雨轩, 等. 上扬子地区五峰组和龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 2017, 42(7): 1169-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707012.htm

    Lu Y B, Ma Y Q, Wang Y X, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze area[J]. Earth Science, 2017, 42(7): 1169-1184(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707012.htm
    [36]
    郭洪金. 涪陵海相页岩气富集及高产机理[M]. 北京: 科学出版社, 2020.

    Guo H J. Enrichment and high production mechanism of marine shale gas in Fuling area[M]. Science Press, 2020: 71-76 (in Chinese).
    [37]
    甘玉青, 王超, 方栋梁, 等. 四川盆地焦石坝地区五峰-龙马溪组页岩元素地球化学特征及对页岩气开发的意义[J]. 石油实验地质, 2018, 40(1): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801013.htm

    Gan Y Q, Wang C, Fang D L, et al. Element geochemical characteristics of the Wufeng-Longmaxi shale in Jiaoshiba area, Sichuan Basin and their significance to the shale gas development[J]. Petroleum Geology & Experiment, 2018, 40(1): 78-89(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801013.htm
    [38]
    邱振, 卢斌, 陈振宏, 等. 火山灰沉积与页岩有机质富集关系探讨: 以五峰-龙马溪组含气页岩为例[J]. 沉积学报, 2019, 37(6): 1296-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201906017.htm

    Qiu Z, Lu B, Chen Z H, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201906017.htm
    [39]
    Liu G H, Zhai G Y, Zou C N, et al. A comparative discussion of the evidence for biogenic silica in Wufeng-Longmaxi siliceous shale reservoir in the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 109(11): 70-87.
    [40]
    Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1): 1-19.
    [41]
    Wedepohl K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8: 307-333.
    [42]
    林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801012.htm

    Lin Z J, Chen D F, Liu Q. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200801012.htm
    [43]
    Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(237) PDF Downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return