Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
PANG Haisong, XIE Junjin, ZHANG Xiaoming, WANG Guanhe, ZHANG Ming. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153
Citation: PANG Haisong, XIE Junjin, ZHANG Xiaoming, WANG Guanhe, ZHANG Ming. Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 215-225. doi: 10.19509/j.cnki.dzkq.tb20230153

Hazard assessment of debris flow induced by short-time heavy rainfall based on RAMMS numerical simulation

doi: 10.19509/j.cnki.dzkq.tb20230153
More Information
  • Objective

    Debris flows caused by short-term heavy rainfall are a frequent occurrence in Zhejiang Province and pose a serious threat to the lives and property of mountain residents. Therefore, the assessment of debris flow risk has significant theoretical and practical value for disaster management in the province. To investigate the hazard of debris flows caused by short-term heavy rainfall, the Wushankeng watershed was selected for research by means of field investigations and remote sensing interpretations, combined with numerical simulation.

    Methods

    The obtained results revealed the geological environment, development characteristics and disaster chain formation mechanism of debris flow in the watershed. The RAMMS numerical simulation software was used to simulate the debris flow depth and the velocity under different rainfall frequencies, and the hazard assessment was carried out based on these movement characteristics.

    Results

    The results of the research indicated that loose rock and soil at steep slopes experienced shallow landslides under the effect of short-term heavy rainfall. Then, under the control of the slope and gully topography, it migrated to the mouth of the gully, and during the movement, the scale of the debris flow was expanded by erosion. Finally, it was deposited in the wide and gentle accumulation area. As the intensity of the study area rainfall increased to a 50-year or 100-year occurrence, the scale of the debris flow increased, but it was limited by the gentle topographical conditions of the accumulation area, and it was unable to effectively discharge at the mouth of the gully. However, the indicators of mud depth and flow velocity in the resident areas upstream of the accumulation fan significantly increased, and the area of high-intensity areas in the accumulation area increased from 7 276 m2 to 12 660 m2. Combined with the results of debris flow activity analysis, the combination of rainfall monitoring in the formation area, constructing rigid, flexible, or slit check dams in the circulation area of the main channel, and setting up drainage channels in the accumulation area can effectively protect the lives and properties of residents.

    Conclusion

    The research results can provide reference for debris flow hazard assessment and engineering treatment in the study area and Zhejiang Province.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    钱宁, 王兆印. 泥石流运动机理的初步探讨[J]. 地理学报, 1984, 39(1): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198401004.htm

    QIAN N, WANG Z Y. A preliminary study on the mechanism of debris flows[J]. Acta Geographica Sinica, 1984, 39(1): 33-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198401004.htm
    [2]
    岳丽霞. 浙江省泥石流形成及成灾特点[J]. 山地学报, 2012, 30(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201201014.htm

    YUE L X. Cause and damaging characteristic of debris flow in Zhejiang Province[J]. Mountain Research, 2012, 30(1): 87-92. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201201014.htm
    [3]
    冯杭建, 周爱国, 唐小明, 等. 浙江省泥石流灾害发育分布规律及区域预报[J]. 地球科学, 2016, 41(12): 2088-2099. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612012.htm

    FENG H J, ZHOU A G, TANG X M, et al. Development and distribution characteristics of debris flow in Zhejiang Province and it's regional forecast[J]. Earth Science, 2016, 41(12): 2088-2099. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201612012.htm
    [4]
    崔鹏, 郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术, 2021, 53(3): 5-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm

    CUI P, GUO J. Evolution models, risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences, 2021, 53(3): 5-18. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm
    [5]
    万飞鹏, 杨为民, 邱占林, 等. 甘肃岷县纳古呢沟滑坡-泥石流灾害链成灾机制及其演化[J]. 中国地质, 2023, 50(3): 911-925. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202303017.htm

    WAN F P, YANG W M, QIU Z L, et al. Disaster mechanism and evolution of Nagune gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J]. Geology in China, 2023, 50(3): 911-925. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202303017.htm
    [6]
    袁丽侠, 崔星, 王州平, 等. 浙江乐清仙人坦泥石流的形成机制[J]. 自然灾害学报, 2009, 18(2): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200902023.htm

    YUAN L X, CUI X, WANG Z P, et al. Cause mechanism of Xianrentan debris flow in Yueqing City, Zhejiang Province[J]. Journal of Natural Disasters, 2009, 18(2): 150-154. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200902023.htm
    [7]
    张春山, 张业成, 张立海. 中国崩塌、滑坡、泥石流灾害危险性评价[J]. 地质力学学报, 2004, 10(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200401004.htm

    ZHANG C S, ZHANG Y C, ZHANG L H. Danger assessment of collapses, landslides and debris flows of geological hazards in China[J]. Journal of Geomechanics, 2004, 10(1): 27-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200401004.htm
    [8]
    CHEN P Y, YANG H M, LIU Y, et al. Evaluation of debris flow risk based on independent information data fluctuation weighting method[J]. Rock and Soil Mechanics, 2013, 34(2): 449-454.
    [9]
    刘加龙, 吕希奎, 刘贵应. 模糊综合评判法在泥石流灾度评价中的应用[J]. 地质科技情报, 2001, 20(4): 86-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200104022.htm

    LIU J L, LV X K, LIU G Y, Fuzzy comprehensive evaluation method to evaluate debris flow hazard degree[J]. Geological Science and Technology Information, 2001, 20(4): 86-88. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200104022.htm
    [10]
    PAN W, JIAN L, LIU T. Grey system theory trends from 1991 to 2018: A bibliometric analysis and visualization[J]. Scientometrics, 2019, 121(3): 1407-1434. doi: 10.1007/s11192-019-03256-z
    [11]
    VASU N N, LEE S, LEE D, et al. A method to develop the input parameter database for site-specific debris flow hazard prediction under extreme rainfall[J]. Landslides, 2018, 15(8): 1523-1539. doi: 10.1007/s10346-018-0971-7
    [12]
    胡进, 朱颖彦, 杨志全, 等. 中巴公路沿线冰川泥石流的形成与危险性评估[J]. 地质科技情报, 2013, 32(6): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306028.htm

    HU J, ZHU Y Y, YANG Z Q, et al. Formation and hazard evaluation of glacial debris flow disasters along international Karakoram Highway[J]. Geological Science and Technology Information, 2013, 32(6): 181-185. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306028.htm
    [13]
    胡凯衡, 崔鹏, 田密, 等. 泥石流动力学模型和数值模拟研究综述[J]. 水利学报, 2012, 43(增刊2): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2012S2015.htm

    HU K H, CUI P, TIAN M, et al. A review of the debris flow dynamic models and numerical simulation[J]. Journal of Hydraulic Engineering, 2012, 43(S2): 79-84. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2012S2015.htm
    [14]
    乔成, 欧国强, 潘华利, 等. 泥石流数值模拟方法研究进展[J]. 地球科学与环境学报, 2016, 38(1): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201601016.htm

    QIAO C, OU G Q, PAN H L, et al. Review on numerical modeling methods of debris flow[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 134-142. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201601016.htm
    [15]
    TRUJILLO-VELA M G, RAMOS-CAÑÓN A M, ESCOBAR-VARGAS J A, et al. An overview of debris-flow mathematical modelling[J]. Earth-Science Reviews, 2022, 232: 104135. doi: 10.1016/j.earscirev.2022.104135
    [16]
    甘建军, 罗昌泰. 中低山冲沟型泥石流运动参数及过程模拟[J]. 自然灾害学报, 2020, 29(2): 97-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202002010.htm

    GAN J J, LUO C T. Runout and process simulation of gully debris flow in middle and low mountains[J]. Journal of Natural Disasters, 2020, 29(2): 97-110. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202002010.htm
    [17]
    侯圣山, 曹鹏, 陈亮, 等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质, 2021, 48(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102017.htm

    HOU S S, CAO P, CHENG L, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143-151. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102017.htm
    [18]
    CHANG M, TANG C, VANASCH T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake stricken area, Southwest China[J]. Landslides, 2017, 14(5): 1783-1792. doi: 10.1007/s10346-017-0824-9
    [19]
    陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42(2): 258-266. doi: 10.19509/j.cnki.dzkq.tb20220235

    CHEN L, FAN X M, XIONG J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 258-266. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220235
    [20]
    梁恒, 李吉林, 刘发明, 等. 基于光滑粒子流体动力学方法的泥石流冲击桥墩试验模拟[J]. 岩土力学, 2021, 42(5): 1473-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105029.htm

    LIANG H, LI J L, LIU F M, et al. Simulation of debris flow impacting bridge pier tests based on smooth particle hydromechanics method[J]. Rock and Soil Mechanics, 2021, 42(5): 1473-1484. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105029.htm
    [21]
    樊圆圆, 宋玲, 孙雯. 基于PFC的冰碛土泥石流起动过程模拟研究[J]. 干旱区资源与环境, 2021, 35(3): 140-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202103021.htm

    FAN Y Y, SONG L, SUN W. A simulation study on the starting process of moraine debris flow based on PFC[J]. Journal of Arid Land Resources and Environment, 2021, 35(3): 140-146. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202103021.htm
    [22]
    王沁, 姚令侃. 格子Boltzmann方法及其在泥石流堆积研究中的应用[J]. 灾害学, 2007, 22(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200703001.htm

    WANG Q, YAO L K. Lattice Boltzmann method and its application in the study on deposition of debris flow[J]. Journal of Catastrophology, 2007, 22(3): 1-5. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200703001.htm
    [23]
    KONG Y, ZHAO J, LI X Y, et al. Coupled CFD/DEM modeling of multiphase debris flowover a Natural Erodible Terrain?The Yu-Tung Road Case[C]//Anon. 2nd JTC1 International Conference on Triggering & Propagation of Rapid Flow-like Landslides. Hong Kong: [s.n.], 2018.
    [24]
    KONG Y, GUAN M F, ZHAO J D, et al. Bi-linear laws govern the impacts of debris flows, debris avalanches and rock avalanches on flexible barrier[J]. Journal of Geophysical Research(Earth Surface), 2022, 127: e2022JF006870.
    [25]
    KONG Y, LI X Y, ZHAO J D. Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier[J]. Engineering Geology, 2021, 289: 106188. doi: 10.1016/j.enggeo.2021.106188
    [26]
    刘波, 胡卸文, 何坤, 等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质, 2021, 48(5): 150-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105016.htm

    LIU B, HU X W, HE K, et al. Characteristics and evolution process simulation of the Baqu gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 150-160. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105016.htm
    [27]
    余斌. 稀性泥石流容重计算的改进方法[J]. 山地学报, 2009, 27(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200901014.htm

    YU B. Research on the improver calculating density of less viscosity debris flows[J]. Mountain Research, 2009, 27(1): 70-75. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200901014.htm
    [28]
    LIU W, YANG Z J, HE S M. Modeling the landslide-generated debris flow from formation to propagation and run-out by considering the effect of vegetation[J]. Landslides, 2020, 18(1): 3-58.
    [29]
    AN H, OUYANG C, WANG F, et al. Comprehen-sive analysis and numerical simulation of a large debris flow in the Meilong catchment, China[J]. Engineering Geology, 2022, 298: 106546. doi: 10.1016/j.enggeo.2022.106546
    [30]
    QUAN-LUNA B, BLAHUT J, VAN WESTEN C J, et al. The application of numerical debris flow modelling for the generation of physical vulnerability curves[J]. Natural Hazards and Earth System Science, 2011, 11(7): 2047-2060. doi: 10.5194/nhess-11-2047-2011
    [31]
    常鸣, 窦向阳, 唐川, 等. 降雨驱动泥石流危险性评价[J]. 地球科学, 2019, 44(8): 2794-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908023.htm

    CHANG M, DOU X Y, TANG C, et al. Hazard assessment of typical debris flow induced by rainfall intensity[J]. Earth Science, 2019, 44(8): 2794-2802. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908023.htm
    [32]
    CHANG M, LIU Y, ZHOU C, et al. Hazard assessment of a catastrophic mine waste debris flow of Hou gully, Shimian, China[J]. Engineering Geology, 2020, 275: 105733.
    [33]
    OUYANG C, WANG Z, AN H, et al. An example of a hazard and risk assessment for debris flows: A case study of Niwan gully, Wudu, China[J]. Engineering Geology, 2019, 263: 105351.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(317) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return