Citation: | Zhang Qing, Zhang Cheng, Duan Hailong, Xu Hongguo, Zhang Xin. Major and trace elemental compositions and geological significance of sphalerite in the Fuxingtun Ag-Pb-Zn polymetallic deposit, Horqin Right Wing Front, Inner Mongolia[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 161-174. doi: 10.19509/j.cnki.dzkq.tb20230172 |
The Fuxingtun deposit is a recently discovered large Ag-Pb-Zn polymetallic deposit in Horqin Right Wing Front area, Inner Mongolia. However, the researches on the deposit are very scarce. The study investigates occurrence characteristics of ore-forming elements, precipitation mechanism and genetic type of the deposit, in order to provide theoretical basis for the genesis of the deposit.
This study focused on sphalerite in different stages of the Fuxingtun Ag-Pb-Zn polymetallic deposit, and obtained metallography, major and trace elemental compositions of sphalerite, in order to discuss the precipitation mechanism of ore-forming elements and the genetic types of this deposit.
Combined with field investigation and metallography observations, the metallogenic process of the Fuxingtun deposit can be divided into three stages: Cu-Zn sulfide stage (Stage Ⅰ), Pb-Zn sulfide stage (Stage Ⅱ) and Pb-Zn sulfide stage (Stage Ⅲ). The results of electron probe microanalysis show that the content of Fe in sphalerite varies greatly, and there is an obvious negative correlation between Fe and Zn. The results of LA-ICP-MS analysis showed that, the contents of Fe, Mn and In in sphalerite decreased gradually from Stage Ⅰ to Ⅲ, whereas those of Ga, Ge and Sb increased slightly. Based on the diagrams of laser ablation signal curve and the correlation among different elements, this study constrained that Fe, Mn, Cd, Cu In, and Ag in sphalerite are present as the form of isomorphism. On the other hand, Pb exists in the form of micro-inclusions, while Bi and Sb mainly occur as galena micro-inclusions in sphalerite. The trace element compositions of sphalerite grains also show that the periodic pressure fluctuation in the ore-forming process is responsible for the formation of oscillatory zone in sphalerite. We proposed that the multiple decompression and cooling of ore-forming fluids are the main mechanism of mineral precipitation in the Fuxingtun deposit.
Combined with the geological characteristics of the deposit and the trace element characteristics of sphalerite, it is proposed that the Fuxingtun Ag-Pb-Zn polymetallic deposit is a medium-sized, epithermal sulfide deposit.
[1] |
刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 2004, 11(1): 269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024
Liu J M, Zhang R, Zhang Q Z. The regional metallogeny of Da Hinggan Ling, China[J]. Earth Science Frontiers, 2004, 11(1): 269-277(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2004.01.024
|
[2] |
葛文春, 吴福元, 周长勇, 等. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J]. 科学通报, 2007, 52(20): 2407-2417. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720014.htm
Ge W C, Wu F Y, Zhou C Y, et al. The age of porphyry Cu, Mo ore-forming and geodynamic implications in the East Xing-Meng Orogenic Belt[J]. Chinese Science Bulletin, 2007, 52(20): 2407-2417(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200720014.htm
|
[3] |
马星华, 陈斌, 赖勇, 等. 斑岩铜钼矿床成矿流体的出溶、演化与成矿: 以大兴安岭南段敖仑花矿床为例[J]. 岩石学报, 2010, 26(5): 1397-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005007.htm
Ma X H, Chen B, Lai Y, et al. Fluid exsolution, evolution and mineralization in porphyry Cu-Mo deposit: A case study from the Aolunhua deposit, southern Da Xing'an Mts[J]. Acta Petrologica Sinica, 2010, 26(5): 1397-1410(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005007.htm
|
[4] |
匡永生, 郑广瑞, 卢民杰, 等. 内蒙古赤峰市双尖子山银多金属矿床的基本特征[J]. 矿床地质, 2014, 33(4): 847-856. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201404014.htm
Kuang Y S, Zheng G R, Lu M J, et al. Basic characteristics of Shuangjianzishan sliver polymetallic deposit in Chifeng City, Inner Mongolia[J]. Mineral Deposits, 2014, 33(4): 847-856(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201404014.htm
|
[5] |
刘翼飞, 樊志勇, 蒋胡灿, 等. 内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究[J]. 地质学报, 2014, 88(12): 2373-2385. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412016.htm
Liu Y F, Fan Z Y, Jiang H C, et al. Genesis of the Weilasituo-Bairendaba porphyry-hydrothermal vein type system in Inner Mongolia, China[J]. Acta Geologica Sinica, 2014, 88(12): 2373-2385(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412016.htm
|
[6] |
何鹏, 郭硕, 张天福, 等. 大兴安岭中南段扎木钦铅锌银多金属矿床成矿物质来源及矿床成因: 来自S、Pb同位素的制约[J]. 岩石学报, 2018, 34(12): 3597-3610. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812010.htm
He P, Guo S, Zhang T F, et al. The sources of ore-forming materials and genesis of the Zhamuqin Pb-Zn-Ag polymetallic deposit in the middle-southern segment of Da Hinggan Mountains: Constraints from S, Pb isotope geochemistry[J]. Acta Petrologica Sinica, 2018, 34(12): 3597-3610(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812010.htm
|
[7] |
刘瑞麟, 武广, 李铁刚, 等. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义[J]. 地学前缘, 2018, 25(5): 183-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805014.htm
Liu R L, Wu G, Li T G, et al. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing'an Range and their geological significance[J]. Earth Science Frontiers, 2018, 25(5): 183-201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805014.htm
|
[8] |
常时旗, 李海军, 王德力, 等. 数字地质调查系统在内蒙古复兴屯矿区一区资源量估算的应用[J]. 内蒙古科技与经济, 2019(17): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201917024.htm
Chang S Q, Li H J, Wang D L, et al. Application of digital geological survey system in the estimation of resources in the No. 1 area of Fuxingtun deposit, Inner Mongolia[J]. Inner Mongolia Science Technology & Economy, 2019(17): 55-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201917024.htm
|
[9] |
李敏, 赵忠海, 李海军, 等. 内蒙古科右前旗复兴屯银铅锌多金属矿床的发现及其意义[J]. 黄金, 2022, 43(11): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202211002.htm
Li M, Zhao Z H, Li H J, et al. Discovery and significance of Fuxingtun Ag-Pb-Zn polymetallic deposit in the Keyouqianqi, Inner Mongolia[J]. Gold, 2022, 43(11): 5-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202211002.htm
|
[10] |
Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105
|
[11] |
王启林, 张金阳, 严德天, 等. 黄铜矿微量元素对矿床成因类型的指示[J]. 地质科技通报, 2023, 42(1): 126-143. doi: 10.19509/j.cnki.dzkq.2021.0090
Wang Q L, Zhang J Y, Yan D T, et al. Genesis type of ore deposits indicated by trace elements of chalcopyrite[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 126-143(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0090
|
[12] |
Zhang Y, Chen H, Cheng J, et al. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China[J]. American Mineralogist, 2022, 107(10): 1910-1925. doi: 10.2138/am-2022-8118
|
[13] |
Frenzel M, Cook N J, Ciobanu C L, et al. Halogens in hydrothermal sphalerite record origin of ore-forming fluids[J]. Geology, 2020, 48(8): 766-770. doi: 10.1130/G47087.1
|
[14] |
祝明明, 邹建林, 王闯, 等. 幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态[J]. 地质科技通报, 2021, 40(6): 55-69. doi: 10.19509/j.cnki.dzkq.2021.0606
Zhu M M, Zou J L, Wang C, et al. Mineralogy, geochronology and occurrence state of the Duanfengshan Nb-Ta deposit in Mufushan area[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 55-69(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0606
|
[15] |
周成胶, 张刚阳, 张丁川. 铼金属矿床类型、元素赋存形式和富集机制[J]. 地质科技通报, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431
Zhou C J, Zhang G Y, Zhang D C. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0431
|
[16] |
Benedetto R D, Bernardini G P, Costagliola P, et al. Compositional zoning in sphalerite crystals[J]. American Mineralogist, 2005, 90(8/9): 1384-1392.
|
[17] |
Gottesmann W, Kampe A. Zn/Cd ratios in calcsilicate-hosted sphalerite ores at Tumurtijn-ovoo, Mongolia[J]. Geochemistry, 2007, 67(4): 323-328.
|
[18] |
Ishihara S, Hoshino K, Murakami H, et al. Resource evaluation and some genetic aspects of indium in the Japanese ore deposits[J]. Resource Geology, 2006, 56(3): 347-364.
|
[19] |
Ishihara S, Endo Y. Indium and other trace elements in volcanogenic massive sulfide ores from the Kuroko, Besshi and other types in Japan[J]. Bulletin of the Geological Survey of Japan, 2007, 58(1/2): 7-22.
|
[20] |
Martín J D, Soler I Gil A. An integrated thermodynamic mixing model for sphalerite geobarometry from 300 to 850℃ and up to 1 GPa[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 995-1006.
|
[21] |
Soares Monteiro L V, Bettencourt J S, Juliani C, et al. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil[J]. Ore Geology Reviews, 2006, 28(2): 201-234.
|
[22] |
Wang C, Deng J, Zhang S, et al. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton[J]. Acta Geologica Sinica: English Edition, 2010, 84(6): 1428-1438.
|
[23] |
Ye L, Cook N J, Ciobanu C L, et al. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study[J]. Ore Geology Reviews, 2011, 39(4): 188-217.
|
[24] |
范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12): 3479-3496(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
|
[25] |
Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668.
|
[26] |
Qiu K F, Marsh E, Yu H C, et al. Fluid and metal sources of the Wenquan porphyry molybdenum deposit, western Qinling, NW China[J]. Ore Geology Reviews, 2017, 86: 459-473.
|
[27] |
Wu Y F, Evans K, Li J W, et al. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit[J]. Geochimica et Cosmochimica Acta, 2019, 245: 98-117.
|
[28] |
樊献科, 董永观, 秦纪华, 等. 新疆阿尔泰小土尔根铜矿床硫化物微量元素、S-Pb同位素特征及地质意义[J]. 地质论评, 2016, 62(2): 472-489. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602020.htm
Fan X K, Dong Y G, Qin J H, et al. Characteristics of trace elements and S-Pb isotope composition of sulfides in Xiaotuergen copper deposit, Altay, Xinjiang, and its geological implications[J]. Geological Review, 2016, 62(2): 472-489(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602020.htm
|
[29] |
田浩浩, 张寿庭, 曹华文, 等. 豫西赤土店铅锌矿床闪锌矿微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2015, 34(2): 334-342. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201502019.htm
Tian H H, Zhang S T, Cao H W, et al. Geochemical characteristics of trace elements of sphalerite in the Chitudian Pb-Zn deposit, west Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 334-342(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201502019.htm
|
[30] |
樊树启, 刘俊杰, 徐同宝, 等. 内蒙古科尔沁右翼前旗复兴屯2区银铅锌矿地质特征及找矿标志[J]. 有色金属: 矿山部分, 2021, 73(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202101013.htm
Fan S Q, Liu J J, Xu T B, et al. Geological characteristics and prospecting criteria of the No. 2 mining area of Fuxingtun Ag-Pb-Zn deposit in the Horqin Right Front Banner, Inner Mongolia[J]. Nonferrous Metals: Mining Section, 2021, 73(1): 75-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202101013.htm
|
[31] |
Yang S Y, Jiang S Y, Mao Q, et al. Electron probe microanalysis in geosciences: Analytical procedures and recent advances[J]. Atomic Spectroscopy, 2022, 43(2): 186-200.
|
[32] |
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
|
[33] |
Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791.
|
[34] |
George L, Cook N J, Cristiana L. C, et al. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study[J]. American Mineralogist, 2015, 100(2/3): 548-569.
|
[35] |
George L L, Cook N J, Ciobanu C L. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores[J]. Ore Geology Reviews, 2016, 77: 97-116.
|
[36] |
Pyykk P. Refitted tetrahedral covalent radii for solids[J]. Physical Review B, 2012, 85(2): 24115.
|
[37] |
Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part Ⅰ. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic Geology, 1995, 90(5): 1167-1196.
|
[38] |
Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141.
|
[39] |
Thomas H V, Large R R, Bull S W, et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31.
|
[40] |
赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005014.htm
Sai S X, Qiu K F. Ore-forming processes of the Rushan gold deposit, Jiaodong: Fluid immiscibility induced by episodic fluid pressure fluctuations[J]. Acta Petrologica Sinica, 2020, 36(5): 1547-1566(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005014.htm
|
[41] |
蔡劲宏, 周卫宁, 张锦章. 江西银山铜铅锌多金属矿床闪锌矿的标型特征[J]. 桂林工学院学报, 1996, 16(4): 370-375. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX604.007.htm
Cai J H, Zhou W N, Zhang J Z. Typomorphic characteristics of sphalerites in the Yinshan copper, lead and zinc polymetallic deposits, Jiangxi[J]. Journal of Guilin Institute of Technology, 1996, 16(4): 370-375(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX604.007.htm
|
[42] |
叶霖, 高伟, 杨玉龙, 等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J]. 岩石学报, 2012, 28(5): 1362-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205004.htm
Ye L, Gao W, Yang Y L, et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province[J]. Acta Petrologica Sinica, 2012, 28(5): 1362-1372(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205004.htm
|
[43] |
叶霖, 李珍立, 胡宇思, 等. 四川天宝山铅锌矿床硫化物微量元素组成: LA-ICPMS研究[J]. 岩石学报, 2016, 32(11): 3377-3393. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911014.htm
Ye L, Li Z L, Hu Y S, et al. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China: A LA-ICPMS study[J]. Acta Petrologica Sinica, 2016, 32(11): 3377-3393(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201911014.htm
|
[44] |
Ruaya J R, Seward T M. The stability of chlorozinc(Ⅱ) complexes in hydrothermal solutions up to 350℃[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 651-661.
|
[45] |
Stefánsson A, Seward T M. Experimental determination of the stability and stoichiometry of sulphide complexes of silver(Ⅰ) in hydrothermal solutions to 400℃[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1395-1413.
|
[46] |
Hayashi K, Sugaki A, Kitakaze A. Solubility of sphalerite in aqueous sulfide solutions at temperatures between 25 and 240℃[J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 715-725.
|
[47] |
Cooke D R, Deyell C L, Waters P J, et al. Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines[J]. Economic Geology, 2011, 106(8): 1399-1424.
|
[48] |
胡鹏, 吴越, 张长青, 等. 扬子板块北缘马元铅锌矿床闪锌矿LA-ICP-MS微量元素特征与指示意义[J]. 矿物学报, 2014, 34(4): 461. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201404005.htm
Hu P, Wu Y, Zhang C Q, et al. Trace and minor elements in sphalerite from the Mayuan lead-zinc deposit, northern margin of the Yangtze plate: Implications from LA-ICP-MS analysis[J]. Acta Mineralogica Sinica, 2014, 34(4): 461(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201404005.htm
|
[49] |
Wang L, Qin K Z, Song G X, et al. A review of intermediate sulfidation epithermal deposits and subclassification[J]. Ore Geology Reviews, 2019, 107: 434-456.
|
[50] |
Hedenquist J W, Arribas R A, Gonzalez U E. Exploration for epithermal gold deposit[J]. Reviews in Economic Geology, 2000, 13: 519-527.
|