Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
LIU An, YU Congling, WANG Liping, SONG Juanjuan, SUN Lianwei, JIN Qian, SUN Menghua. Heavy metal sources and ecological risk assessment of typical lead-zinc mining areas in Hebei Province[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 307-317. doi: 10.19509/j.cnki.dzkq.tb20230373
Citation: LIU An, YU Congling, WANG Liping, SONG Juanjuan, SUN Lianwei, JIN Qian, SUN Menghua. Heavy metal sources and ecological risk assessment of typical lead-zinc mining areas in Hebei Province[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 307-317. doi: 10.19509/j.cnki.dzkq.tb20230373

Heavy metal sources and ecological risk assessment of typical lead-zinc mining areas in Hebei Province

doi: 10.19509/j.cnki.dzkq.tb20230373
More Information
  • Author Bio:

    LIU An, E-mail: hbbdliuan@qq.com

  • Corresponding author: YU Congling, E-mail: yucongling@sina.com
  • Received Date: 03 Jul 2023
  • Accepted Date: 15 Sep 2023
  • Rev Recd Date: 07 Sep 2023
  • Objective

    To reveal the sources and ecological risks of heavy metals in a typical lead-zinc mining area in Hebei Province, 156 soil samples were collected around a zinc mining area in Hebei Province through a systematic field sampling method.

    Methods

    The sources of heavy metals in the area were analysed via principal component analysis(PCA) and a positive matrix factorization(PMF) model. The risk assessment was carried out according to the index of geoaccumulation method and potential ecological risk index method.

    Results

    The results show that the mean values of Cr, Ni, Cu, Zn, As, Cd, Pb and Hg are 53.6, 25.7, 62.7, 692, 10.6, 1.75, 142, 0.129 mg/kg, respectively. Except for Cr, Ni and As, the other 5 elements present at different pollution levels. Above the background values of the soils in Hebei Province, the coefficient of variation of Hg, Cd, Zn, Pb and Cu is more than 1.75, and the coefficient of variation of As exceeds 0.5, indicating the high variability of these 6 elements. The results of the source analysis reveal that the main sources of soil heavy metals include mining activities, natural sources, agricultural activities, and gold smelting. Zn, Cd and Pb were mainly derived from mining activities; Cr and Ni were influenced by natural parent materials and were derived from natural sources; Cu was mainly derived from agricultural activities and mining activities; As was controlled by natural sources, mining activities and agricultural activities; and Hg was originated from mainly gold smelting and mining activities. The combination of PCA and the PMF model to corroborate each other facilitates the reliability of the heavy metal source analysis results.

    Conclusion

    There is anthropogenic Hg and Cd contamination in this area, as indicated by the high geoaccumulation indices and potential ecological risk indices. In addition, the ecological risk in general was found to be very high, and attention needs to be given to and management work to be carried out.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    LUO X, WU C, LIN Y, et al. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization[J]. Journal of Environmental Sciences, 2023, 125(3): 662-677.
    [2]
    YAN K, WANG H, LAN Z, et al. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades[J]. Journal of Cleaner Production, 2022, 373: 133780. doi: 10.1016/j.jclepro.2022.133780
    [3]
    张晓平, 吴志华, 陈佳木, 等. 砷在金属矿山中的赋存形态及迁移机制[J]. 地质科技通报, 2022, 41(4): 138-148. doi: 10.19509/j.cnki.dzkq.2022.0121

    ZHANG X P, WU Z H, CHEN J M, et al. Occurrence state and migration mechanism of arsenic in metal mines[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 138-148. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0121
    [4]
    KUMAR S, PRASAD S, YADAV K K, et al. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A Review[J]. Environmental Research, 2019, 179: 108792. doi: 10.1016/j.envres.2019.108792
    [5]
    ZHANG Y, SONG B, ZHOU Z. Pollution assessment and source apportionment of heavy metals in soil from lead-zinc mining areas of South China[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109320. doi: 10.1016/j.jece.2023.109320
    [6]
    陈佳木, 吴志华, 刘文浩, 等. 湖南水口山多金属矿区废石堆重金属污染评价及赋存形态分析[J]. 地球科学, 2021, 46(11): 4127-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111025.htm

    CHEN J M, WU Z H, LIU W H, et al. Heavy metal pollution evaluation and species analysis of waste rock piles in Shuikoushan, Hunan Province[J]. Earth Science, 2021, 46(11): 4127-4139. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111025.htm
    [7]
    徐迎春, 杨丽虎, 宋献方, 等. 基于保护敏感目标的场地地下水污染风险评估[J]. 地质科技通报, 2023, 42(3): 262-271. doi: 10.19509/j.cnki.dzkq.tb20220256

    XU Y C, YANG L H, SONG X F, et al. Site groundwater pollution risk assessment based on the protection of sensitive receptors[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 262-271. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220256
    [8]
    HUANG C, ZHANG L, MENG J, et al. Characteristics, source apportionment and health risk assessment of heavy metals in urban road dust of the Pearl River Delta, South China[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113490. doi: 10.1016/j.ecoenv.2022.113490
    [9]
    王攀, 靳孟贵, 路东臣, 等. 永城市浅层地下水污染分布特征及来源识别[J]. 地质科技通报, 2022, 41(1): 260-268. doi: 10.19509/j.cnki.dzkq.2021.0136

    WANG P, JIN M G, LU D C, et al. Distribution characteristics and source identification of shallow groundwater pollution in Yongcheng City[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 260-268. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0136
    [10]
    黄波涛. 典型危废处置利用企业周边土壤重金属分布特征、来源及风险评价[J]. 环境化学, 2023, 42(2): 435-445. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202302010.htm

    HUANG B T. Distribution characteristics, sources analysis and potential ecological risk assessment of heavy metals in soils surrounding typical hazardous waste disposal and utilization plants[J]. Environmental Chemistry, 2023, 42(2): 435-445. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202302010.htm
    [11]
    WANG J, ZHANG X, CHEN A, et al. Source analysis and risk evaluation of heavy metal in the river sediment of polymetallic mining area: Taking the Tonglüshan skarn type Cu-Fe-Au deposit as an example, Hubei section of the Yangtze River Basin, China[J]. China Geology, 2022, 5(4): 649-661.
    [12]
    LIU T, ZHU L H, BAO R, et al. Hydrodynamically-driven distribution and remobilization of heavy metals in surface sediments around the coastal area of Shandong Peninsula, China[J]. Science of the Total Environment, 2023, 857(1): 159286.
    [13]
    JIN Y L, O'CONNOR D, YONG S O, et al. Assessment of sources of heavy metals in soil and dust at Children's playgrounds in Beijing using GIS and multivariate statistical analysis[J]. Environment International, 2019, 124: 320-328. doi: 10.1016/j.envint.2019.01.024
    [14]
    HUANG R J, CHEN R, JING M, et al. Source-specific heaith risk analysis on particulate trace elements: Coal combustion and traffic emission as major contributors in wintertime Beijing[J]. Environmental Science & Technology, 2018, 52(19): 967-974.
    [15]
    ZHU K, TONG H Y, ZHANG D H, et al. Analysis of heavy metal pollution characteristics and sources in surface sediments of major rivers in the Jiaozhou Bay area based on the positive matrix factorization model[J]. Environmental Chemistry, 2023, 42(3): 743-756.
    [16]
    ZHANG Y, LI W, LI L, et al. Source apportionment of PM2.5 using PMF combined online bulk and single-particle measurements: Contribution of fireworks and biomass burning[J]. Journal of Environmental Sciences, 2024, 136: 325-336. doi: 10.1016/j.jes.2022.12.019
    [17]
    HU B, ZHOU Y, JIANG Y, et al. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China(2002-2012)[J]. Jounal of Environmental Management, 2020, 271: 110943.
    [18]
    陈航, 王颖, 王澍. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 2022, 43(5): 2719-2731. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202205047.htm

    CHEN H, WANG Y, WANG S. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 2022, 43(5): 2719-2731. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202205047.htm
    [19]
    陈盟, 潘泳兴, 黄奕翔, 等. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析[J]. 环境科学, 2022, 43(10): 4545-4555. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202210025.htm

    CHEN M, PAN Y X, HUANG Y X, et al. Spatial distribution and sources of heavy metals in soil of a typical lead-zinc mining area, Yangshuo[J]. Environmental Science, 2022, 43(10): 4545-4555. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202210025.htm
    [20]
    解洪晶, 王玉往, 孙志远, 等. 华北地块北缘铅锌矿床类型、地质特征及构造演化[J]. 地球学报, 2018, 39(6): 707-720. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201806008.htm

    XIE H J, WANG Y W, SUN Z Y, et al. Types, characteristics, and tectonic evolution of Pb-Zn deposits on the northern margin of the North China Block[J]. Acta Geoscientica Sinica, 2018, 39(6): 707-720. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201806008.htm
    [21]
    师淑娟, 宫进忠, 张洁. 河北省铅锌矿源层与地球化学块体[J]. 矿床地质, 2010, 29(2): 276-282. doi: 10.3969/j.issn.0258-7106.2010.02.008

    SHI S J, GONG J Z, ZHANG J. Lead-zinc source beds and geochemical blocks in Hebei Province[J]. Mineral Deposits, 2010, 29(2): 276-282. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2010.02.008
    [22]
    赵雪朋, 宾金来. 河北省涞源县南赵庄铅锌矿地质特征[J]. 西部探矿工程, 2012, 24(11): 109-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201211036.htm

    ZHAO X P, BIN J L. Geological characteristics of Nanzhaozhuang lead-zinc deposit in Layuan County, Hebei Province[J]. West-China Exploration Engineering, 2012, 24(11): 109-110. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201211036.htm
    [23]
    PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
    [24]
    LIU L, XU X H, HAN J L, et al. Heavy metal(loid)s in agricultural soils in the world's largest barium-mining area: Pollution characteristics, source apportionment, and health risks using PMF model and Cd isotopes[J]. Process Safety and Environmental Protection, 2022, 166: 669-681. doi: 10.1016/j.psep.2022.08.061
    [25]
    贾振邦, 周华, 赵智杰, 等. 应用地积累指数法评价太子河沉积物中重金属污染[J]. 北京大学学报(自然科学版), 2000, 36(4): 525-530. doi: 10.3321/j.issn:0479-8023.2000.04.014

    JIA Z B, ZHOU H, ZHAO Z J, et al. The application of the index of geoaccumulation to evaluate heavy metal pollution in sediments in the benxi section of the Taizi River[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2000, 36(4): 525-530. (in Chinese with English abstract) doi: 10.3321/j.issn:0479-8023.2000.04.014
    [26]
    WEERASUNDARA L, MAGANA-ARACHCHI D N, ABDUL M, et al. Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka[J]. Journal of Environmental Management, 2018, 220: 198-206.
    [27]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

    China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990. (in Chinese)
    [28]
    王凤仙, 胡玉清, 李生志. 河北省褐土重金属元素含量及其背景值[J]. 农业环境科学学报, 1987, 6(3): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH198703007.htm

    WANG F X, HU Y Q, LI S Z. Content and background value of heavy metal elements in brown soil of Hebei Province[J]. Agro-environment Protection, 1987, 6(3): 21-23. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH198703007.htm
    [29]
    SHENG Y, WANG Z, FENG X. Potential ecological risk and zoning control strategies for heavy metals in soils surrounding core water sources: A case study from Danjiangkou Reservoir, China[J]. Ecotoxicology and Environmental Safety, 2023, 252: 114610. doi: 10.1016/j.ecoenv.2023.114610
    [30]
    张丁, 黄容, 高雪松. 山地平原过渡带耕地土壤重金属空间特征及潜在生态风险因素探析[J]. 环境科学, 2022, 43(2): 946-956. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202202037.htm

    ZHANG D, HUANG R, GAO X S. Spatial characteristics and potential ecological risk factors of heavy metals in cultivated land in the transition zone of a mountain plain[J]. Environmental Science, 2022, 43(2): 946-956. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202202037.htm
    [31]
    HAN Y, XUN F, ZHAO C, et al. Evaluating potential ecological risks of emerging toxic elements in lacustrine sediments: A case study in Lake Fuxian, China[J]. Environmental Pollution, 2023, 323: 121277. doi: 10.1016/j.envpol.2023.121277
    [32]
    HAKANSON L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
    [33]
    生态环境部, 国家市场监督管理总局. GB15618-2018: 土壤环境质量农用地土壤污染风险管控标准[S]. 北京: 中国标准出版社, 2018.

    Ministry of Ecology and Environment, State Administration for Market Regulation. GB15618-2018: Soil environmental quality-risk control standard for soil contamination of agricultural land[S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [34]
    柳峰, 李龙飞, 刘雨博, 等. 河北省某铅锌矿区周边耕地土壤重金属污染评价及来源分析[J]. 干旱区资源与环境, 2023, 37(1): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202301019.htm

    Liu F, Li L F, Liu Y B, et al. Evaluation and sources of heavy metal pollution in soils of cultivated land around a lead-zinc mine area in Hebei Province[J]. Journal of Arid Land Resources and Environment, 2023, 37(1): 136-142. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202301019.htm
    [35]
    赵靓, 梁云平, 陈倩, 等. 中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J]. 环境科学, 2020, 41(12): 5552-5561. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012041.htm

    ZHAO L, LIANG Y P, CHEN Q, et al. Spatial distribution, contamination assessment, and sources of heavy metals in the urban green space soils of a city in North China[J]. Environmental Science, 2020, 41(12): 5552-5561. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012041.htm
    [36]
    阮敏, 周康, 黄忠良, 等. 铅锌矿区废弃地修复客土层的重金属污染特征分析[J]. 环境科学学报, 2021, 41(9): 3803-3814. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202109040.htm

    RUAN M, ZHOU K, HUANG Z L, et al. Analysis of heavy metal pollution characteristics of guest soil after restoration of abandoned lead-zinc mine area[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3803-3814. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202109040.htm
    [37]
    LIN Y, MA J, ZHANG Z, et al. Linkage between human population and trace elements in soils of the Pearl River Delta: Implications for source identification and risk assessment[J]. Science of the Total Environment, 2018, 610/611: 944-950.
    [38]
    穆虹宇, 庄重, 李彦明, 等. 我国畜禽粪便重金属含量特征及土壤累积风险分析[J]. 环境科学, 2020, 41(2): 986-996. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202002058.htm

    MU H Y, ZHUANG Z, LI Y M, et al. Heavy metal contents in animal manure in China and the related soil accumulation risks[J]. Environmental Science, 2020, 41(2): 986-996. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202002058.htm
    [39]
    蒋靖坤, 郝吉明, 吴烨, 等. 中国燃煤汞排放清单的初步建立[J]. 环境科学, 2005, 26(2): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200502006.htm

    JIANG J K, HAO J M, WU Y, et al. Development of mercury emission inventory from coal combustion in China[J]. Environmental Science, 2005, 26(2): 34-39. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200502006.htm
    [40]
    WU Z, LI P, FENG X. Assessing the factors impacting the bioaccessibility of mercury(Hg) in rice consumption by an in-vitro method[J]. Journal of Environmental Sciences, 2022, 119(9): 119-129.
    [41]
    李娇, 滕彦国, 吴劲, 等. PMF模型解析土壤重金属来源的不确定性[J]. 中国环境科学, 2020, 40(2): 716-725. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002034.htm

    LI J, TENG Y G, WU J, et al. Uncertainty analysis of soil heavy metal source apportionment by PMF model[J]. China Environmental Science, 2020, 40(2): 716-725. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002034.htm
    [42]
    LIANG J H, LIU Z Y, TIAN Y Q, et al. Research on health risk assessment of heavy metals in soil based on multi-factor source apportionment: A case study in Guangdong Province, China[J]. Science of the Total Environment, 2023, 858(3): 159991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(303) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return