Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
CUI Yulong, ZHU Lulu, XU Min, MIAO Haibo. Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 192-199. doi: 10.19509/j.cnki.dzkq.tb20230400
Citation: CUI Yulong, ZHU Lulu, XU Min, MIAO Haibo. Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 192-199. doi: 10.19509/j.cnki.dzkq.tb20230400

Optimizing TSES method based on the environmental factors to select negative samples and its application in landslide susceptibility evaluation

doi: 10.19509/j.cnki.dzkq.tb20230400
More Information
  • Corresponding author: CUI Yulong, E-mail: ylcui@aust.edu.cn
  • Received Date: 14 Jul 2023
  • Accepted Date: 08 Sep 2023
  • Rev Recd Date: 07 Sep 2023
  • Objective

    Landslide susceptibility evaluation is an important means for landslide disaster prevention and control. Unreasonable negative landslide samples will affect landslide susceptibility evaluation, thereby affecting landslide disaster prevention and control. Therefore, it is particularly critical to provide a reasonable negative sample selection method.

    Methods

    In view of the selection of negative landslide samples, the ancient landslides in Milin City, Xizang are taken as an example, and 10 environmental factors, including elevation, slope, slope aspect, slope position, distance to road, distance to fault, distance to water system, topographic relief, lithology and land use type, are selected. The Relief algorithm is used to calculate the contribution values of environmental factors and to select the optimized environmental factors. The target space exteriorization sampling (TSES) method based on the optimization of environmental factors is applied to select negative samples as the input variables of the random forest (RF)model with excellent performance.Then, the optimized environmental factors and positive/negative samples are combined to predict the landslide susceptibility of Milin city, and the confusion matrix and receiver operating characteristic (ROC) curve are used to evaluate the prediction performance.To test the effectiveness and advancement of the TSES method optimized by environmental factors, the coupled information method and TSES method are respectively used to select negative landslide samples and constructs RF models to conduct comparative research with the RF model constructed by the TSES method optimized by environmental factors.

    Results

    The results show that the evaluation effect of the RF model constructed by the optimized TSES method based on environmental factors is better with an ACC value of 93.7% and an AUC value of 0.987, both of which are greater than those of the RF models constructed by the coupling information method and the TSES method.

    Conclusion

    The TSES optimized by environmental factors can improve the accuracy of the RF model, solve the problems of environmental factor selection in multifactor constrained sampling, and provide a new approach to collect negative landslide samples for landslide susceptibility evaluation.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. doi: 10.3321/j.issn:1000-6915.2008.06.003

    XU Q, TANG M G, XU K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.06.003
    [2]
    李文彦, 王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报, 2020, 29(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202004022.htm

    LI W Y, WANG X L. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters, 2020, 29(4): 213-220. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202004022.htm
    [3]
    许冲, 戴福初, 姚鑫, 等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2972-2981. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm

    XU C, DAI F C, YAO X, et al. Analysis of deterministic coefficient of influencing factors of Wenchuan earthquake landslide disaster based on GIS[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2972-2981. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm
    [4]
    杜国梁, 张永双, 高金川, 等. 基于GIS的白龙江流域甘肃段滑坡易发性评价[J]. 地质力学学报, 2016, 22(1): 1-11. doi: 10.3969/j.issn.1006-6616.2016.01.001

    DU G L, ZHANG Y S, GAO J C, et al. Landslide susceptibility assessment based on GIS in Bailongjiang watershed, Gansu Province[J]. Journal of Geomechanics, 2016, 22(1): 1-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2016.01.001
    [5]
    仉文岗, 何昱苇, 王鲁琦, 等. 基于水系分区的滑坡易发性机器学习分析方法: 以重庆市奉节县为例[J]. 地球科学, 2023, 48(5): 2024-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm

    ZHANG W G, HE Y W, WANG L Q, et al. Machine learning solution for landslide susceptibility based on hydrographic division: Case study of Fengjie County in Chongqing[J]. Earth Science, 2023, 48(5): 2024-2038. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm
    [6]
    黄发明, 潘李含, 姚池, 等. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202109012.htm

    HUANG F M, PAN L H, YAO C, et al. Landslide susceptibility prediction modelling based on semi-supervised machine learning[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(9): 1705-1713. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202109012.htm
    [7]
    黄发明, 陈彬, 毛达雄, 等. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性[J]. 地球科学, 2023, 48(5): 1696-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm

    HUANG F M, CHEN B, MAO D X, et al. Landslide susceptibility prediction modeling and interpretability based on self-screening deep learning model[J]. Earth Science, 2023, 48(5): 1696-1710. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm
    [8]
    刘艳辉, 方然可, 苏永超, 等. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 2021, 29(1): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101013.htm

    LIU Y H, FANG R K, SU Y C, et al. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 2021, 29(1): 116-124. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101013.htm
    [9]
    CUI Y L, HU J H, ZHENG J, et al. Susceptibility assessment of landslides caused by snowmelt in a typical loess area in the Yining County, Xinjiang, China[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2022, 55(1): qjegh2021-024.
    [10]
    LUCCHESE L V, DE OLIVEIRA G G, PEDROLLO O C. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks[J]. CATENA, 2021, 198: 105067. doi: 10.1016/j.catena.2020.105067
    [11]
    刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045. doi: 10.11947/j.AGCS.2022.20220326

    LIU J P, LIANG E J, XU S H, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034-2045. (in Chinese with English abstract) doi: 10.11947/j.AGCS.2022.20220326
    [12]
    周晓亭, 黄发明, 吴伟成, 等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 2022, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm

    ZHOU X T, HUANG F M, WU W C, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method[J]. Advanced Engineering Sciences, 2022, 54(3): 25-35. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
    [13]
    LIU S L, WANG L Q, ZHANG W G, et al. A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir Area[J]. Geoscience Frontiers, 2023, 14(5): 101621. doi: 10.1016/j.gsf.2023.101621
    [14]
    KAVZOGLU T, SAHIN E K, COLKESEN I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression[J]. Landslides, 2014, 11(3): 425-439. doi: 10.1007/s10346-013-0391-7
    [15]
    缪亚敏, 朱阿兴, 杨琳, 等. 滑坡危险度制图中一种新型的负样本采样方法[J]. 地理与地理信息科学, 2016, 32(4): 61-67. doi: 10.3969/j.issn.1672-0504.2016.04.011

    MIAO Y M, ZHU A X, YANG L, et al. A new method of pseudo absence data generation in landslide susceptibility mapping[J]. Geography and Geo-Information Science, 2016, 32(4): 61-67. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0504.2016.04.011
    [16]
    吴润泽, 胡旭东, 梅红波, 等. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例[J]. 地球科学, 2021, 46(1): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm

    WU R Z, HU X D, MEI H B, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir Area[J]. Earth Science, 2021, 46(1): 321-330. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101025.htm
    [17]
    黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79-90. doi: 10.19509/j.cnki.dzkq.2021.0087

    HUANG F M, HU S Y, YAN X Y, et al. Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79-90. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0087
    [18]
    杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报, 2022, 41(2): 228-238. doi: 10.19509/j.cnki.dzkq.2022.0059

    YANG C, LIU L L, ZHANG Y L, et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 228-238. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0059
    [19]
    孔嘉旭, 庄建琦, 彭建兵, 等. 基于信息量和卷积神经网络的黄土高原滑坡易发性评价[J]. 地球科学, 2023, 48(5): 1711-1729. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305004.htm

    KONG J X, ZHUANG J Q, PENG J B, et al. Evaluation of landslide susceptibility in Chinese Loess Plateau based on IV-RF and IV-CNN coupling models[J]. Earth Science, 2023, 48(5): 1711-1729. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305004.htm
    [20]
    CAI H M, NG M. Feature weighting by RELIEF based on local hyperplane approximation[C]//Anon. Advances in Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 2012: 335-346.
    [21]
    KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm[C]//Anon. Proceedings of the Tenth National Conference on Artificial Intelligence. America, California: Aaai, 1992: 129-134.
    [22]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/A:1010933404324
    [23]
    杨硕, 李德营, 严亮轩, 等. 基于随机森林模型的乌江高陡岸坡滑坡地质灾害易发性评价[J]. 安全与环境工程, 2021, 28(4): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104019.htm

    YANG S, LI D Y, YAN L X, et al. Landslide susceptibility assessment in high and steep bank slopes along Wujiang River based on random forest model[J]. Safety and Environmental Engineering, 2021, 28(4): 131-138. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202104019.htm
    [24]
    郑迎凯, 陈建国, 王成彬, 等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J]. 地质科技通报, 2020, 39(6): 131-144. doi: 10.19509/j.cnki.dzkq.2020.0616

    ZHENG Y K, CHEN J G, WANG C B, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 131-144. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0616
    [25]
    王珂, 郭长宝, 马施民, 等. 基于证据权模型的川西鲜水河断裂带滑坡易发性评价[J]. 现代地质, 2016, 30(3): 705-715. doi: 10.3969/j.issn.1000-8527.2016.03.022

    WANG K, GUO C B, MA S M, et al. Landslide susceptibility evaluation based on weight-of-evidence modeling in the Xianshuihe fault zone, East Tibetan Plateau[J]. Geoscience, 2016, 30(3): 705-715. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2016.03.022
    [26]
    DU G L, ZHANG Y S, YANG Z H, et al. Estimation of seismic landslide hazard in the eastern Himalayan syntaxis region of Tibetan Plateau[J]. Acta Geologica Sinica-English Edition, 2017, 91(2): 658-668. doi: 10.1111/1755-6724.13124
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(241) PDF Downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return