Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
WANG Weimin, GU Chengchuan, CHENG Longyi, WU Jiwen, ZHAI Xiaorong. Characteristics and geodynamic background of the coal-controlled structural patterns in the Qianyingzi Coalmine, Huaibei Coalfield[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 133-146. doi: 10.19509/j.cnki.dzkq.tb20230436
Citation: WANG Weimin, GU Chengchuan, CHENG Longyi, WU Jiwen, ZHAI Xiaorong. Characteristics and geodynamic background of the coal-controlled structural patterns in the Qianyingzi Coalmine, Huaibei Coalfield[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 133-146. doi: 10.19509/j.cnki.dzkq.tb20230436

Characteristics and geodynamic background of the coal-controlled structural patterns in the Qianyingzi Coalmine, Huaibei Coalfield

doi: 10.19509/j.cnki.dzkq.tb20230436
More Information
  • Author Bio:

    WANG Weimin, E-mail: 45133264@qq.com

  • Corresponding author: GU Chengchuan, E-mail: guchengchuan15@163.com
  • Received Date: 25 Jul 2023
  • Accepted Date: 07 Oct 2023
  • Rev Recd Date: 06 Oct 2023
  • <p>The Qianyingzi Coalmine is located on the west of the Suxian Mining area of the Huaibei Coalfield, adjacent to the outer edge of the southern segment of the Xu-Su Arc Nappe Belt.</p></sec><sec><title>Methods

    Based on the latest geological exploration and production data, this paper analysed the structural framework and coal-controlled structural patterns of the Qianyingzi Coalmine, divided the tectonic stages, and discussed the geotectonic background of the coalmine structures,

    Objective

    which provides an important geological basis for the understanding of the tectonic deformation and evolution of the coalmine, the geodynamic mechanism and the prediction of exploration directions.

    Results

    The results show that the Carboniferous-Permian coal-bearing formations in the mine are generally a gentle syncline with an NNE-trending axis. The faults in the mine are well developed, and the number of reverse faults is greater than that of normal faults. Both of these faults are mainly NE to NNE, followed by NS. The structural framework of this mine is significantly controlled by several large NS to NE-striking faults and is segmented from west to east by major faults, including the Nanping, F22, F17, DF200 and Shuangdui faults, which exhibit the characteristic of east and west zonation. The coal-controlled structural patterns in the mine can be classified into three types, namely, compressional, extensional and strike-slip. And the coal-controlled patterns can be further divided into nine subtypes, namely, thrust drag folds, hedge structures, pop-up structures, imbricate structures, grabens, horsts, step faults, positive flower structures and pinnated en-echelon structures. The analysis of structural combinations shows that the F17 fault has not only thrusting motion but also significant transcurrent activity.

    Conclusion

    The structural deformation of coal-bearing formation in the Qianyingzi Coalmine can be divided into five stages: the Fengjia Syncline with an NNE-trending axis, nearly NS-striking reverse faults, NNE-striking reverse-sinistral faults and NE-striking reverse faults, nearly NS-striking normal faults, and NW-SE-striking normal faults. Combined with the results of previous studies on the regional tectonic background, the first and second shortening structures in this mine are the results of foreland deformation during the convergence of the North China Craton and South China Plate and subsequent continent-continent collisional deformation during the Indosinian period. The third stage compresso-shear structures are related to the rapid oblique subduction of the Izanagi Plate toward the East Asian continental margin at the beginning of the Early Cretaceous in the Western Pacific. The fourth and fifth stage extensional structures developed against a strong extensional background in eastern China during the Early Cretaceous.

     

  • loading
  • [1]
    李铎, 武强. 南定地热田成因及影响因素探讨[J]. 中国矿业大学学报, 2002, 31(1): 53-57. doi: 10.3321/j.issn:1000-1964.2002.01.013

    LI D, WU Q. Research on genesis and influencing factors of Nanding geothermal field[J]. Journal of China University of Mining & Technology, 2002, 31(1): 53-57. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-1964.2002.01.013
    [2]
    HOU Q L, LI H J, FAN J J, et al. Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China Earth Sciences, 2012, 55(11): 1755-1763. doi: 10.1007/s11430-012-4493-1
    [3]
    WANG H F, WANG L, CHENG Y P, et al. Characteristics and dominant controlling factors of gas outburst in Huaibei Coalfield and its countermeasures[J]. International Journal of Mining Science and Technology, 2013, 23(4): 591-596. doi: 10.1016/j.ijmst.2013.07.019
    [4]
    PAN R K, CHENG Y P, YUAN L, et al. Effect of bedding structural diversity of coal on permeability evolution and gas disasters control with coal mining[J]. Natural Hazards, 2014, 73(2): 531-546. doi: 10.1007/s11069-014-1086-7
    [5]
    曹代勇, 谭节庆, 陈利敏, 等. 我国煤炭资源潜力评价与赋煤构造特征[J]. 煤炭科学技术, 2013, 41(7): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201307003.htm

    CAO D Y, TAN J Q, CHEN L M, et al. Coal resources potential evaluation and coal occurrence tectonics in China[J]. Coal Science and Technology, 2013, 41(7): 5-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201307003.htm
    [6]
    占文锋, 曹代勇, 刘天绩, 等. 柴达木盆地北缘控煤构造样式与赋煤规律[J]. 煤炭学报, 2008, 33(5): 500-504. doi: 10.3321/j.issn:0253-9993.2008.05.006

    ZHAN W F, CAO D Y, LIU T J, et al. Coal-controlled structural styles and coal occurrence regularity in northern Qaidam Basin[J]. Journal of China Coal Society, 2008, 33(5): 500-504. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9993.2008.05.006
    [7]
    曹代勇, 孙红波, 孙军飞. 青海东北部木里煤田控煤构造样式与找煤预测[J]. 地质通报, 2010, 29(11): 1696-1703. doi: 10.3969/j.issn.1671-2552.2010.11.012

    CAO D Y, SUN H B, SUN J F. Coal-controlled structural styles and looking for coal resources in Muli Coalfield, northeastern Qinghai, China[J]. Geological Bulletin of China, 2010, 29(11): 1696-1703. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2010.11.012
    [8]
    李焕同, 王林杰, 曹代勇. 湖南涟邵煤田控煤构造样式研究[J]. 河北工程大学学报(自然科学版), 2014, 31(1): 66-69. doi: 10.3969/j.issn.1673-9469.2014.01.018

    LI H T, WANG L J, CAO D Y. Coal measures occurrence and controlling structure pattern of Lianshao Coalfield, Hunan Province[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2014, 31(1): 66-69. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-9469.2014.01.018
    [9]
    赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    ZHAO Y, XU G, ZHANG S H, et al. Yanshanian movement and conversion of tectonic regimes in East Asia[J]. Earth Science Frontiers, 2004, 11(3): 319-328. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2004.03.030
    [10]
    ZHU G, NIU M L, XIE C L, et al. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin[J]. Journal of Geology, 2010, 118(3): 277-293. doi: 10.1086/651540
    [11]
    ZHU G, JIANGD Z, ZHANG B L, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005
    [12]
    DONG S W, ZHANG Y Q, ZHANG F Q, et al. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 2015, 114: 750-770. doi: 10.1016/j.jseaes.2015.08.011
    [13]
    朱日祥, 朱光, 李建威, 等. 华北克拉通破坏[M]. 北京: 科学出版社, 2020.

    ZHU R X, ZHU G, LI J W, et al. The North China Craton destruction[M]. Beijing: Science Press, 2020. (in Chinese with English abstract)
    [14]
    屈争辉, 姜波, 汪吉林, 等. 淮北地区构造演化及其对煤与瓦斯的控制作用[J]. 中国煤炭地质, 2008, 20(10): 34-37. doi: 10.3969/j.issn.1674-1803.2008.10.010

    QU Z H, JIANG B, WANG J L, et al. Characteristics of tectonic evolution and its controlling effects on coal and gas in Huaibei area[J]. Coal Geology of China, 2008, 20(10): 34-37. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2008.10.010
    [15]
    朱文伟, 张品刚, 张继坤, 等. 安徽省两淮煤田控煤构造样式研究[J]. 中国煤炭地质, 2011, 23(8): 49-52. doi: 10.3969/j.issn.1674-1803.2011.08.11

    ZHU W W, ZHANG P G, ZHANG J K, et al. Study on structural coal controlling pattern in Huainan and Huaibei Coalfields, Anhui Province[J]. Coal Geology of China, 2011, 23(8): 49-52. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2011.08.11
    [16]
    李书奎, 彭涛. 淮北刘店煤矿构造特征及其形成机制分析[J]. 中国煤炭地质, 2012, 24(7): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207007.htm

    LI S K, PENG T. Analysis of structural features and formation mechanism in Liudian Coalmine, Huaibei[J]. Coal Geology of China, 2012, 24(7): 24-28. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201207007.htm
    [17]
    姜涛, 姜波, 黄涵彬. 淮北煤田五沟煤矿构造特征及其演化[J]. 中国煤炭地质, 2014, 26(4): 11-16. doi: 10.3969/j.issn.1674-1803.2014.04.03

    JIANG T, JIANG B, HUANG H B. Structural features and evolution in Wugou coalmine, Huaibei Coalfield[J]. Coal Geology of China, 2014, 26(4): 11-16. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2014.04.03
    [18]
    方婷, 解国爱, 王博, 等. 淮北煤田构造特征和形成机制[J]. 煤田地质与勘探, 2017, 45(3): 1-6. doi: 10.3969/j.issn.1001-1986.2017.03.001

    FANG T, XIE G A, WANG B, et al. The structure features and forming mechanism of Huaibei Coalfield[J]. Coal Geology & Exploration, 2017, 45(3): 1-6. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1986.2017.03.001
    [19]
    张继坤. 安徽省煤田构造与构造控煤作用研究[D]. 北京: 中国矿业大学(北京), 2011.

    ZHANG J K. Coalfield structures and tectonic coal-controlling of Anhui Province[D]. Beijing: China University of Mining & Technology (Beijing), 2011. (in Chinese with English abstract)
    [20]
    彭涛. 淮北煤田断裂构造系统及其形成演化机理[D]. 安徽淮南: 安徽理工大学, 2015.

    PENG T. The fault system and its evolution mechanism of Huaibei Coalfield[D]. Huainan Anhui: Anhui University of Science & Technology, 2015. (in Chinese with English abstract)
    [21]
    刘军. 淮北矿区构造演化及其对矿井构造发育的控制作用[D]. 江苏徐州: 中国矿业大学, 2017.

    LIU J. The tectonic evolution and its effect on mine structure in Huaibei Coalfield[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2017. (in Chinese with English abstract)
    [22]
    李满堆. 钱营孜煤矿东一采区DF200逆断层防水煤柱计算[J]. 能源技术与管理, 2016, 41(2): 107-109. doi: 10.3969/j.issn.1672-9943.2016.02.041

    LI M D. Calculation of waterproof coal pillar on the DF200 reverse fault in Dongyi mining field of Qianyingzi Coal Mine[J]. Energy Technology and Management, 2016, 41(2): 107-109. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9943.2016.02.041
    [23]
    李永, 高川. 钱营孜矿DF200逆断层灰岩推覆体水害初步分析[J]. 能源技术与管理, 2015, 40(2): 45-46. doi: 10.3969/j.issn.1672-9943.2015.02.019

    LI Y, GAO C. Preliminary analysis on water damage from limestone nappe of DF200 thrust fault in the Qianyingzi Mine[J]. Energy Technology and Management, 2015, 40(2): 45-46. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9943.2015.02.019
    [24]
    陈凯, 刘启蒙, 刘瑜, 等. 钱营孜煤矿深部地下水水化学特征及来源解析[J]. 煤田地质与勘探, 2022, 50(8): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202208011.htm

    CHEN K, LIU Q M, LIU Y, et al. Hydrochemical characteristics and source analysis of deep groundwater in Qianyingzi Coal Mine[J]. Coal Geology & Exploration, 2022, 50(8): 99-106. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202208011.htm
    [25]
    卫军光, 崔洪庆, 马东晓, 等. 钱营孜32煤层瓦斯地质规律研究及突出预测[J]. 煤矿现代化, 2011, 20(1): 39-41. doi: 10.3969/j.issn.1009-0797.2011.01.019

    WEI J G, CUI H Q, MA D X, et al. Study on gas geological law and outburst prediction of Qianyingzi 32 Coal Seam[J]. Coal Mine Modernization, 2011, 20(1): 39-41. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-0797.2011.01.019
    [26]
    李明, 杨伟峰, 刘曦, 等. 钱营孜煤矿32煤赋存特征及其稳定性评价[J]. 煤矿安全, 2011, 42(8): 159-161. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201108054.htm

    LI M, YANG W F, LIU X, et al. Occurrence characteristics and stability evaluation of 32 coal in the Qianyingzi Coal Mine[J]. Safety in Coal Mines, 2011, 42(8): 159-161. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201108054.htm
    [27]
    吴素珍, 彭涛, 郭艳. 皖北钱营孜煤矿地温分布规律及其异常因素分析[J]. 中国煤炭地质, 2013, 25(6): 30-35. doi: 10.3969/j.issn.1674-1803.2013.06.007

    WU S Z, PENG T, GUO Y. Ground temperature distribution pattern and its abnormal factor analysis in Qianyingzi Coalmine, northern Anhui[J]. Coal Geology of China, 2013, 25(6): 30-35. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2013.06.007
    [28]
    ZHU R X, XU Y G, ZHU G, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 55(10): 1565-1587. doi: 10.1007/s11430-012-4516-y
    [29]
    XU J W, ZHU G, TONG W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the Northwest of the Pacific Ocean[J]. Tectonophysics, 1987, 134(4): 273-310. doi: 10.1016/0040-1951(87)90342-8
    [30]
    ZHANG S, ZHU G, LIU C, et al. Strike-slip motion within the Yalu River fault zone, NE Asia: The development of a shear continental margin[J]. Tectonics, 2018, 37(6): 1771-1796. doi: 10.1029/2018TC004968
    [31]
    ZHANG S, ZHU G, XIAO S Y, et al. Temporal variations in the dynamic evolution of an overriding plate: Evidence from the Wulong area in the eastern North China Craton, China[J]. Geological Society of America Bulletin, 2020, 132(9/10): 2023-2042.
    [32]
    ZHU G, LIU C, GU C C, et al. Oceanic plate subduction history in the western Pacific Ocean: Constraint from Late Mesozoic evolution of the Tan-Lu fault zone[J]. Science China (Earth Sciences), 2018, 61(4): 386-405. doi: 10.1007/s11430-017-9136-4
    [33]
    ZHU G, LU Y C, SU N, et al. Crustal deformation and dynamics of Early Cretaceous in the North China Craton[J]. Science China (Earth Sciences), 2021, 64(9): 1428-1450. doi: 10.1007/s11430-020-9749-0
    [34]
    解国爱, 董承杰, 李凤荣, 等. 淮北煤田孙疃煤矿构造特征及其演化[J]. 中国煤炭地质, 2015, 27(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201503001.htm

    XIE G A, DONG C J, LI F R, et al. Structural features and evolution in Suntuan Coalmine, Huaibei Coalfield[J]. Coal Geology of China, 2015, 27(3): 1-5. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201503001.htm
    [35]
    SHU L S, YIN H W, FAURE M, et al. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt[J]. Journal of Asian Earth Sciences, 2017, 141: 161-173.
    [36]
    李法浩, 解国爱, 田荣松, 等. 华北板块东南缘徐淮推覆-褶皱带的物理模拟[J]. 地质通报, 2018, 37(6): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806013.htm

    LI F H, XIE G A, TIAN R S, et al. Physical modeling of Xu-Huai thrust-fold belt on the southeastern margin of North China Block[J]. Geological Bulletin of China, 2018, 37(6): 1087-1100. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806013.htm
    [37]
    琚宜文, 王桂梁. 淮北宿临矿区构造特征及演化[J]. 辽宁工程技术大学学报(自然科学版), 2002, 21(3): 286-289. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200203009.htm

    JU Y W, WANG G L. Tectonic characteristics and evolution of the Sulin Mine area in the Huaibei Coalfield[J]. Journal of Liaoning Technical University (Natural Science), 2002, 21(3): 286-289. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200203009.htm
    [38]
    田诺成. 邹庄井田F25断层导含水性评价及其防治对策研究[D]. 安徽淮南: 安徽理工大学, 2016.

    TIAN N C. Assessment of transmissibility and aquosity of F25 fault as well as measure of prevention in Zouzhuang Coal Mine[D]. Huainan Anhui: Anhui University of Science and Technology, 2016. (in Chinese with English abstract)
    [39]
    吕凡家. 淮北煤田宿县矿区构造特征及其成因分析[J]. 能源技术与管理, 2017, 42(4): 7-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201704005.htm

    LÜ F J. Structural characteristics and genetic analysis of Suxian Mining Area in the Huaibei Coalfield[J]. Energy Technology and Management, 2017, 42(4): 7-8. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201704005.htm
    [40]
    HACKER B R, RATSCHBACHER L, WEBB L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B6): 13339-13364.
    [41]
    ZHENG Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 2012, 328: 5-48.
    [42]
    ZHAO T, ZHU G, LIN S Z, et al. Indentation-induced tearing of a subducting continent: Evidence from the Tan-Lu fault zone, East China[J]. Earth-Science Reviews, 2016, 152: 14-36.
    [43]
    陆元超, 朱光, 尹浩, 等. 郯庐断裂带起源与大陆斜向汇聚[J]. 地质学报, 2022, 96(10): 3410-3425. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htm

    LU Y C, ZHU G, YIN H, et al. Origin of the Tan-Lu fault zone and continental oblique convergence[J]. Acta Geologica Sinica, 2022, 96(10): 3410-3425. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htm
    [44]
    产思维, 张家嘉, 朱义坤. 安徽丁里岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄[J]. 矿产与地质, 2021, 35(2): 249-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202102010.htm

    CHAN S W, ZHANG J J, ZHU Y K. Geological and geochemical characteristics and LA-ICP-MS zircon U-Pb dating age of Dingli Granite in Anhui[J]. Mineral Resources and Geology, 2021, 35(2): 249-257. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202102010.htm
    [45]
    ENGEBRETSON D C, COX A, GORDON R G. Relative motions between oceanic and continental plates in the Pacific Basin[M]. Boulder, Colorado, USA: Geological Society of America, 1985.
    [46]
    MARUYAMA S, ISOZAKI Y, KIMURAG, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J]. Island Arc, 1997, 6(1): 121-142.
    [47]
    LIU S F, GURNIS M, MA P F, et al. Reconstruction of Northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma[J]. Earth-Science Reviews, 2017, 175: 114-142.
    [48]
    WU J, LIN Y A, FLAMENT N, et al. Northwest Pacific-Izanagi plate tectonics since Cretaceous times from western Pacific mantle structure[J]. Earth and Planetary Science Letters, 2022, 583: 117445.
    [49]
    ZHU G, WANG Y S, LIU G S, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 2005, 27(8): 1379-1398.
    [50]
    GU C C, ZHU G, ZHAI M J, et al. Features and origin time of Mesozoic strike-slip structures in the Yilan-Yitong fault zone[J]. Science China Earth Sciences, 2016, 59(12): 2389-2410.
    [51]
    朱光, 王薇, 顾承串, 等. 郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示[J]. 岩石学报, 2016, 32(4): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htm

    ZHU G, WANG W, GU C C, et al. Late Mesozoic evolution history of the Tan-Lu fault zone and its indication to destruction processes of the North China Craton[J]. Acta Petrologica Sinica, 2016, 32(4): 935-949. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604001.htm
    [52]
    LIU C, ZHU G, ZHANG S, et al. Mesozoic strike-slip movement of the Dunhua-Mishan fault zone in NE China: A response to oceanic plate subduction[J]. Tectonophysics, 2018, 723: 201-222.
    [53]
    ZHANG Y Q, DONG S W, SHI W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China[J]. Tectonophysics, 2003, 363(3): 243-258.
    [54]
    WU X D, ZHU G, YIN H, et al. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex ineastern China[J]. Tectonics, 2020, 39(9): TC006132.
    [55]
    韦帅, 杨治, 邓宇峰, 等. 徐宿弧安徽北段地区矽卡岩型Au-Fe-Cu矿床以及有关的中酸性侵入岩年代学研究[J]. 岩石矿物学杂志, 2021, 40(2): 395-410. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202102015.htm

    WEI S, YANG Z, DENG Y F, et al. Geochronology of skarn type Au-Fe-Cu deposits and related intermediate-acid intrusive rocks in the northern Anhui section, Xu-Su arcuate structural area[J]. Acta Petrologica et Mineralogica, 2021, 40(2): 395-410. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202102015.htm
    [56]
    XU W L, WANG Q H, LIU X C, et al. Chronology and sources of Mesozoic intrusive complexes in the Xuzhou-Huainan region, central China: Constraints from SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica (English Edition), 2004, 78(1): 96-106.
    [57]
    杨德彬, 许文良, 裴福萍, 等. 徐淮地区早白垩世adakitic岩石的年代学和Pb同位素组成: 对岩浆源区与华北克拉通东部构造演化的制约[J]. 岩石学报, 2008, 24(8): 1745-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808008.htm

    YANG D B, XU W L, PEI F P, et al. Chronology and Pb isotope compositions of Early Cretaceous adakitic rocks in Xuzhou-Huaibei area, central China: Constraints on magma sources and tectonic evolution in the eastern North China Craton[J]. Acta Petrologica Sinica, 2008, 24(8): 1745-1758. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808008.htm
    [58]
    周虎, 尚德锋, 产思维, 等. 徐淮地区斑井岩体锆石U-Pb测年、岩石成因及其地质意义[J]. 矿物岩石, 2019, 39(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201903002.htm

    ZHOU H, SHANG D F, CHAN S W, et al. Zircon U-Pb dating, petrogenesis and geological significance of the Banjing pluton in Xuhuai area[J]. Journal of Mineralogy and Petrology, 2019, 39(3): 9-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201903002.htm
    [59]
    王伟, 产思维. 安徽淮北地区徐楼岩体锆石LA-ICP-MS U-Pb年代学、地球化学特征[J]. 安徽地质, 2020, 30(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ202001003.htm

    WANG W, CHAN S W. LA-ICP-MS U-Pb chronologic and geochemical characteristics of zircons from the Xulou rock mass in the Huaibei area, Anhui Province[J]. Geology of Anhui, 2020, 30(1): 7-13. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ202001003.htm
    [60]
    产思维. 徐淮地区早白垩世闪长岩类继承锆石U-Pb年代学及地质意义[J]. 地质学刊, 2020, 44(3): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ202003004.htm

    CHAN S W. Inherited zircon U-Pb chronology and geological significance of the Early Cretaceous diorites in Xuhuai area[J]. Journal of Geology, 2020, 44(3): 258-264. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ202003004.htm
    [61]
    刘元晴, 文冬光, 吕琳, 等. 沂蒙山区典型断陷盆地岩溶地下水系统特征: 以莱芜盆地为例[J]. 地质科技通报, 2022, 41(1): 157-167. doi: 10.19509/j.cnki.dzkq.2022.0013

    LIU Y Q, WEN D G, LÜ L, et al. Characteristics of karst groundwater flow systems of typical faulted basins in Yimeng Mountain area: A case study of Laiwu Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 157-167. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0013
    [62]
    王向东, 王任, 石万忠, 等. 中国东部典型裂谷盆地构造活动特征及演化: 以松辽盆地孤店断陷为例[J]. 地质科技通报, 2022, 41(3): 85-95. doi: 10.19509/j.cnki.dzkq.2022.0089

    WANG X D, WANG R, SHI W Z, et al. Tectonic characteristics and evolution of typical rift basins in eastern China: A case study in the Gudian area, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 85-95. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0089
    [63]
    ZHANG Y Q, QIU E K, DONG S W, et al. Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: An overview and new view[J]. Tectonophysics, 2022, 835: 229377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(191) PDF Downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return