Citation: | Ruan Boyang, Yang Panrui, Guo Huirong, Wang Zhe. Factors influencing the dissolution rate of residual DNAPL in unconnected pores based on PIV technology[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 241-249. doi: 10.19509/j.cnki.dzkq.tb20230515 |
The leakage of dense nonaqueous phase liquids (DNAPL) with a density greater than that of water into the underground environment becomes a long-term pollution source. Previous researchers have studied the effects of flushing fluid flow rate, cosolvent concentration, and media properties on DNAPL removal efficiency through methods such as column experiments, sandboxes, and numerical simulations.
However, the effect of pore-scale flow rate on the dissolution rate of residual DNAPL in the pores remains unclear. In this study, ethanol flushing solution was injected into a micropore model to simulate the removal process of residual PCE from pores. Microscale particle image velocimetry (PIV) was used to obtain the distribution of the water phase velocity field in the pore channel, and the factors affecting the dissolution and removal rate of residual PCE in different pore structures were analysed.
The experimental results indicate that the dissolution rate (
Based on micropore PIV technology, multiple factors, such as pore flow rate and medium pore structure, have been quantitatively revealed to jointly affect the dissolution rate of DNAPL in pores. This finding offers a novel approach to enhance our the understanding of the dissolution mechanism of residual DNAPL in pores and to quantitatively assess the removal efficiency of residual DNAPL under real-site conditions.
[1] |
Essaid H I, Bekins B A, Cozzarelli I M. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding[J]. Water Resources Research, 2015, 51(7): 4861-4902. doi: 10.1002/2015WR017121
|
[2] |
Agaoglu B, Copty N K, Scheytt T, et al. Interphase mass transfer between fluids in subsurface formations: A review[J]. Advances in Water Resources, 2015, 79: 162-194. doi: 10.1016/j.advwatres.2015.02.009
|
[3] |
甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
Gan Y Q, Yu K, Zhou A G, et al. Isotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306018.htm
|
[4] |
宋美钰, 施小清, 康学远, 等. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262
Song M Y, Shi X Q, Kang X Y, et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.tb20220262
|
[5] |
蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm
Pu S Y, Tang J, Hou G Q, et al. Research progress of application of slow-release chemical oxidant in remediation of DNAPLs pollution in groundwater[J]. Environmental Chemistry, 2020, 39(3): 791-799(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202003023.htm
|
[6] |
Hunt J R, Sitar N, Udell K S. Nonaqueous phase liquid transport and cleanup: 1. Analysis of mechanisms[J]. Water Resources Research, 1988, 24(8): 1247-1258. doi: 10.1029/WR024i008p01247
|
[7] |
Karaoglu A G, Copty N K, Akyol N H, et al. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2019, 225: 103515. doi: 10.1016/j.jconhyd.2019.103515
|
[8] |
周媛, 杨盼瑞, 郭会荣, 等. 注入丁醇调节重非水液相密度的微空隙试验模拟[J]. 地质科技通报, 2022, 41(1): 223-230. doi: 10.19509/j.cnki.dzkq.2022.0016
Zhou Y, Yang P R, Guo H R, et al. Injecting n-BuOH to achieve density conversion of dense non-aqueous phase liquid: Pore-scale experimental simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 223-230(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0016
|
[9] |
付玉丰. 表面活性剂及其复配体系对DNAPL污染含水层的增溶增流修复研究[D]. 长春: 吉林大学, 2020.
Fu Y F. Study on solubilization and flow-increasing remediation of DNAPL contaminated aquifer by surfactant and its complex system[D]. Changchun: Jilin University, 2020(in Chinese with English abstract).
|
[10] |
Luciano A, Mancini G, Torretta V, et al. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area[J]. Environmental Science and Pollution Research, 2018, 25(34): 33992-34004. doi: 10.1007/s11356-018-3193-6
|
[11] |
Sarikurt D A, Gokdemir C, Copty N K. Sherwood correlation for dissolution of pooled NAPL in porous media[J]. Journal of Contaminant Hydrology, 2017, 206: 67-74. doi: 10.1016/j.jconhyd.2017.10.001
|
[12] |
Tatti F, Papini M P, Sappa G, et al. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis[J]. Science of the Total Environment, 2018, 622: 164-171.
|
[13] |
Karaoglu A G, Copty N K, Akyol N H, et al. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution[J]. Journal of Contaminant Hydrology, 2019, 225: 103515. doi: 10.1016/j.jconhyd.2019.103515
|
[14] |
Yaksi K, Demiray Z, Copty N K. Impact of cosolvents on the interphase mass transfer of NAPLs in porous media[J]. Water Resources Research, 2021, 57(8): e2020WR029326.
|
[15] |
Alazaiza M Y D, Copty N K, Abunada Z. Experimental investigation of cosolvent flushing of DNAPL in double-porosity soil using light transmission visualization[J]. Journal of Hydrology, 2020, 584: 124659.
|
[16] |
Hu Y, Patmonoaji A, Xu H, et al. Pore-scale investigation on nonaqueous phase liquid dissolution and mass transfer in 2D and 3D porous media[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120901. doi: 10.1016/j.ijheatmasstransfer.2021.120901
|
[17] |
Li M, Zhai Y, Wan L. Measurement of NAPL: Water interfacial areas and mass transfer rates in two-dimensional flow cell[J]. Water Science and Technology, 2016, 74(9): 2145-2151. doi: 10.2166/wst.2016.397
|
[18] |
Santiago J G, Wereley S T, Meinhart C D, et al. A particle image velocimetry system for microfluidics[J]. Experiments in fluids, 1998, 25(4): 316-319.
|
[19] |
Koutsiaris A G, Mathioulakis D S, Tsangaris S. Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries[J]. Measurement Science and Technology, 1999, 10(11): 1037-1046.
|
[20] |
Heshmati M, Piri M. Interfacial boundary conditions and residual trapping: A pore-scale investigation of the effects of wetting phase flow rate and viscosity using micro-particle image velocimetry[J]. Fuel, 2018, 224: 560-578.
|
[21] |
Roman S, Soulaine C, AlSaud M A, et al. Particle velocimetry analysis of immiscible two-phase flow in micromodels[J]. Advances in Water Resources, 2016, 95(S1): 199-211.
|
[22] |
Sen D, Nobes D S, Mitra S K. Optical measurement of pore scale velocity field inside microporous media[J]. Microfluidics and Nanofluidics, 2012, 12(1/4): 189-200.
|
[23] |
Thielicke W, Stamhuis E. PIVlab: Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2: e30.
|
[24] |
Scarano F, Riethmuller M L. Iterative multigrid approach in PIV image processing with discrete window offset[J]. Experiments in Fluids, 1999, 26(6): 513-523.
|
[25] |
Willert C E, Gharib M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181-193.
|
[26] |
Blois G, Barros J M, Christensen K T. A microscopic particle image velocimetry method for studying the dynamics of immiscible liquid-liquid interactions in a porous micromodel[J]. Microfluidics and Nanofluidics, 2015, 18(5/6): 1391-1406.
|
[27] |
Cho J, Annable M D, Rao P S C. Measured mass transfer coefficients in porous media using specific interfacial area[J]. Environmental Science & Technology, 2005, 39(20): 7883-7888.
|
[28] |
Luciano A, Mancini G, Torretta V, et al. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area[J]. Environmental Science and Pollution Research, 2018, 25(34): 33992-34004.
|