Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
LU Yancheng, LI Jun, LIANG Feng, SHI Wenbing, WANG Junyi. Failure probability simulation of passive protection net for collapses and rockfalls in typical karst area[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 240-250. doi: 10.19509/j.cnki.dzkq.tb20230552
Citation: LU Yancheng, LI Jun, LIANG Feng, SHI Wenbing, WANG Junyi. Failure probability simulation of passive protection net for collapses and rockfalls in typical karst area[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 240-250. doi: 10.19509/j.cnki.dzkq.tb20230552

Failure probability simulation of passive protection net for collapses and rockfalls in typical karst area

doi: 10.19509/j.cnki.dzkq.tb20230552
More Information
  • Author Bio:

    LU Yancheng, E-mail: 2362626847@qq.com

  • Corresponding author: LI Jun, E-mail: 76133353@qq.com
  • Received Date: 03 Oct 2023
  • Accepted Date: 12 Dec 2023
  • Rev Recd Date: 07 Dec 2023
  • <p>Guizhou Province is located in Southwest of China, with many mountains and hills, and is a typical karst topography and geomorphology area with frequent geological disasters such as collapses and landslides. The existing dangerous rock mass in the Xiaotunyan collapse zone in Sinan County has large range and volume, and fissures, concave cavities, and solution caves have developed.</p></sec><sec><title>Objective

    In order to study the failure probability of passive protection nets for rockfalls in typical karst areas.

    Methods

    A three-dimensional model of the collapse zone through high-precision realistic modeling technology was constructed, by which the movement process of collapsed falling rocks was simulated. According to the results of the field investigation, aerial photography of the unmanned aerial vehicle and numerical simulation, an appropriate rockfall location layout for the passive protection net was selected. And based on the identification of the rockfall particle size, the different rockfall particle sizes were selected to simulate the interception effect of the passive protection net, then the failure probability of the passive protective net can be calculated.

    Results

    The results show that the rockfall breakthrough rates of 13 particle sizes vary: the interception effect of small to medium sized falling rocks with particle sizes ranging from 0.25 m to 2.25 m is effective, but the interception rate of passive protection net cannot reach 100%. When the particle size is larger than 2.25 m, the passive protection net fails, that is the upper limit of the design of the passive protection net under the Xiaotunyan collapse zone is the 2.25 m particle size of rockfall. According to the calculation, the failure probability of all rockfall particle sizes intercepted by the passive protection net is less than 5%, which is within the acceptable scope.

    Conclusion

    The research results provide a reference for rockfall protection measures in the Xiaotunyan collapse zone and are of great significance for the protection of life and property safety for people in karst mountainous areas.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    胡厚田. 崩塌与落石[M]. 北京: 中国铁道出版社, 1989.

    HU H T. Collapse and falling rocks[M]. Beijing: China Railway Publishing House, 1989. (in Chinese)
    [2]
    CHAU K T, WONG R H C, WU J J. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1): 69-77. doi: 10.1016/S1365-1609(02)00016-3
    [3]
    AZZONI A, LA BARBERA G, ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(7): 709-724.
    [4]
    BOZZOLO D, PAMINI R. Simulation of rock falls down a valley side[J]. Acta Mechanica, 1986, 63(1): 113-130.
    [5]
    张路青, 杨志法, 许兵. 滚石与滚石灾害[J]. 工程地质学报, 2004, 12(3): 225-231. doi: 10.3969/j.issn.1004-9665.2004.03.001

    ZHANG L Q, YANG Z F, XU B. Rock falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225-231. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2004.03.001
    [6]
    丁斌, 孟永旭, 裴晓东. 尼泊尔某项目滚石灾害的工程地质调查与评价[J]. 工程地质学报, 2021, 29(2): 554-563. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102025.htm

    DING B, MENG Y X, PEI X D. Engineering geological investigation and assessment on rockfall hazard of one project in Nepal[J]. Journal of Engineering Geology, 2021, 29(2): 554-563. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102025.htm
    [7]
    WYLLIE D C, MAH C W. Rock slope engineering: Civil and mining[M]. Boca Raton: CRC Press, 2017.
    [8]
    CHEN T J, ZHANG G C, XIANG X. Research on rockfall impact process based on viscoelastic contact theory[J]. International Journal of Impact Engineering, 2023, 173: 104431. doi: 10.1016/j.ijimpeng.2022.104431
    [9]
    PALMA B, PARISE M, REICHENBACH P, et al. Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy[J]. Natural Hazards, 2012, 61(1): 187-201. doi: 10.1007/s11069-011-9899-0
    [10]
    何宇航, 裴向军, 梁靖, 等. 基于Rockfall的危岩体危险范围预测及风险评价: 以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报, 2020, 31(4): 24-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004003.htm

    HE Y H, PEI X J, LIANG J, et al. Risk assessment and range prediction of dangerous rockmass based on rockfall: A case study of the Xuangou collapse[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(4): 24-33. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202004003.htm
    [11]
    SCHILIRÒ L, ROBIATI C, SMERAGLIA L, et al. An integrated approach for the reconstruction of rockfall scenarios from UAV and satellite-based data in the Sorrento Peninsula (southern Italy)[J]. Engineering Geology, 2022, 308: 106795. doi: 10.1016/j.enggeo.2022.106795
    [12]
    YAN J H, CHEN J P, TAN C, et al. Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses[J]. Engineering Geology, 2023, 313: 106993. doi: 10.1016/j.enggeo.2023.106993
    [13]
    王军义, 梁风, 彭雄武, 等. 基于GIS技术的单体崩塌危险范围评价方法研究[J]. 工程地质学报, 2023, 31(1): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301019.htm

    WANG J Y, LIANG F, PENG X W, et al. Study on assessment method of single collapse risk range based on GIS technology[J]. Journal of Engineering Geology, 2023, 31(1): 188-198. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301019.htm
    [14]
    FANOS A M, PRADHAN B. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS[J]. CATENA, 2019, 172: 435-450. doi: 10.1016/j.catena.2018.09.012
    [15]
    王东坡, 何启维, 刘彦辉, 等. 滚石冲击改进型开口帘式网耗能机制研究[J]. 岩土力学, 2021, 42(12): 3356-3365. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112015.htm

    WANG D P, HE Q W, LIU Y H, et al. Research on the energy dissipation mechanism of rockfall impacts on the improved rockfall attenuator barrier[J]. Rock and Soil Mechanics, 2021, 42(12): 3356-3365. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112015.htm
    [16]
    THOENI K, GIACOMINI A, LAMBERT C, et al. A 3D discrete element modelling approach for rockfall analysis with drapery systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 107-119. doi: 10.1016/j.ijrmms.2014.02.008
    [17]
    刘冀昆, 杨晓琳, 王成虎. S-SARⅡ技术的崩塌临灾应急监测原理及其应用[J]. 地质科技通报, 2023, 42(1): 42-51. doi: 10.19509/j.cnki.dzkq.tb20220495

    LIU J K, YANG X L, WANG C H. Principle and application of S-SARⅡ technology for collapse emergency monitoring[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 42-51. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220495
    [18]
    庞鑫, 袁明, 卢渊, 等. 基于无人机LiDAR仿地飞行技术的高陡边坡危岩体快速识别方法[J]. 地质科技通报, 2023, 42(6): 21-30. doi: 10.19509/j.cnki.dzkq.tb20220427

    PANG X, YUAN M, LU Y, et al. Rapid identification method for the dangerous rock mass of a high-steep slope based on UAV LiDAR and ground imitation flight[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 21-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220427
    [19]
    马显东, 周剑, 张路青, 等. 基于崩塌滚石运动特征的防护网动态响应规律[J]. 地球科学, 2022, 47(12): 4559-4573. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202212017.htm

    MA X D, ZHOU J, ZHANG L Q, et al. Dynamic response laws of flexible rockfall barriers based on movement characteristics of rockfall[J]. Earth Science, 2022, 47(12): 4559-4573. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202212017.htm
    [20]
    SARRO R, RIQUELME A, GARCÍA-DAVALILLO J, et al. Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: Application at a cultural heritage site[J]. Remote Sensing, 2018, 10(12): 1923. doi: 10.3390/rs10121923
    [21]
    彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

    PENG S Q, KE L, ZHENG T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0622
    [22]
    王颂, 张路青, 周剑, 等. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报, 2020, 28(4): 784-792. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004012.htm

    WANG S, ZHANG L Q, ZHOU J, et al. Characteristic analysis and kinematic simulation of rockfall along Shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology, 2020, 28(4): 784-792. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004012.htm
    [23]
    SINGH A K, KUNDU J, SARKAR K, et al. Impact of rock block characteristics on rockfall hazard and its implications for rockfall protection strategies along Himalayan highways: A case study[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5347-5368. doi: 10.1007/s10064-021-02288-1
    [24]
    WANG D, BI Y, ZHOU L, et al. Experimental study on physical model of waste tennis ball-sand composite shed cushion under rockfall impact[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 193. doi: 10.1007/s10064-022-02643-w
    [25]
    YAN P, ZHANG J H, KONG X Z, et al. Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain[J]. Computers and Geotechnics, 2020, 122: 103511. doi: 10.1016/j.compgeo.2020.103511
    [26]
    JIANG N, LI H B, LIU M S, et al. Quantitative hazard assessment of rockfall and optimization strategy for protection systems of the Huashiya cliff, Southwest China[J]. Geomatics, Natural Hazards and Risk, 2020, 11(1): 1939-1965. doi: 10.1080/19475705.2020.1819445
    [27]
    阳友奎, 周迎庆, 姜瑞琪, 等. 坡面地质灾害柔性防护的理论与实践[M]. 北京: 科学出版社, 2005.

    YANG Y K, ZHOU Y Q, JIANG R Q, et al. Theory and practice of flexible protection against slope geological hazards[M]. Beijing: Science Press, 2005. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(243) PDF Downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return