Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
DAI Zhaokai, YANG Xianyu, XIE Jingyu, ZHANG Jian, HOU Jiwu, LIU Mengjuan, CAI Jihua. Experimental study of recirculating heat transfer in geothermal wells with nanofluids[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 48-58. doi: 10.19509/j.cnki.dzkq.tb20230588
Citation: DAI Zhaokai, YANG Xianyu, XIE Jingyu, ZHANG Jian, HOU Jiwu, LIU Mengjuan, CAI Jihua. Experimental study of recirculating heat transfer in geothermal wells with nanofluids[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 48-58. doi: 10.19509/j.cnki.dzkq.tb20230588

Experimental study of recirculating heat transfer in geothermal wells with nanofluids

doi: 10.19509/j.cnki.dzkq.tb20230588
More Information
  • Objective

    Enhancing the heat transfer performance of heat transfer media is an effective means of efficiently exploiting geothermal resources. Numerous studies have shown that the addition of nanoscale metals or metal oxides to fluids can effectively improve the heat transfer capacity of the fluid. The physical parameters that can impact the heat transfer performance of nanofluids are type, mass fraction, size of the nanoparticle, dispersant mass fraction. Additionally, the flow rate can have an important effect on the heat transfer performance of nanofluids.

    Methods

    In this study, spherical nano-CuO and spherical nano-Al2O3 were used as nanomaterials for configuring nanofluids. The particle size of nanomaterials ranges from 20 nm to 50 nm. Sodium dodecylbenzene sulfonate was selected as the dispersant for configuring the nanofluids. Basic heat transfer experiments are performed on nanofluids by utilizing a self-constructed basic heat transfer experimental setup. The physical parameters of the nanofluids were also optimized. In addition, a self-designed experimental setup for recirculating heat exchange was established. This experimental system uses geothermal water from hydrothermal geothermal wells as the heat source. The experimental system was also utilized for field testing in a hydrothermal-type geothermal well in Yingshan County, Hubei Province. The preferred nanofluid and deionized water from the basic heat transfer experiments were subjected to on-site circulating heat transfer experiments. Comparison of the circulating heat transfer performance of nanofluids and water under actual heat source conditions in the field. The effect of the flow rate on the heat transfer performance of nanofluids and water under real heat source boundary conditions in the field is also discussed.

    Results

    The results show that (1) the heat transfer performance of CuO nanofluids is better than that of Al2O3 nanofluids. (2) There is a negative correlation between the heat transfer performance of nanofluids and the nanoparticle mass fraction. (3) The nanofluid warming efficiency was highest at a 1% mass fraction of CuO nanoparticles. The nanofluid temperature increased from 25 ℃ to 79.2 ℃ in 150 s. The nanofluid temperature increased by 4.1 ℃ more than that of deionized water in the same amount of time. Moreover, the wettability of the nanofluid-heat source interface decreases with increasing nanoparticle mass fraction. The heat transfer performance of nanofluids increases and then decreases with increasing particle size. The best heat transfer performance of the nanofluid was achieved when the nanoparticle size was 40 nm. (4) The heat transfer performance of nanofluids is negatively correlated with the dispersant mass fraction. The best heat transfer performance of the nanofluid was achieved when the dispersant mass fraction was 1%. (5) The heat transfer performance of the nanofluid is negatively correlated with the flow rate when the fluid is in laminar flow. The motion of nanoparticles is progressively more intense when the fluid is in a turbulent state. This phenomenon can effectively enhance the heat transfer performance of nanofluids.

    Conclusion

    The research results can provide a basis for the application of nanofluids in geothermal heat transfer to improve the heat transfer efficiency of geothermal systems. It also provides theoretical references for the selection of nanofluid parameters as well as fluid flow rate parameters applied to geothermal heat transfer.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202203011.htm

    WANG G L, LU C. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 2022, 31(3): 412-425. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202203011.htm
    [2]
    解经宇, 王丹, 李宁, 等. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报, 2022, 41(3): 321-329. doi: 10.19509/j.cnki.dzkq.2022.0082

    XIE J Y, WANG D, LI N, et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 321-329. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0082
    [3]
    许天福, 姜振蛟, 袁益龙. 中深部地热资源开发利用研究现状与展望[J]. 中国基础科学, 2023, 25(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB202303002.htm

    XU T F, JIANG Z J, YUAN Y L. Research status and prospects of middle and deep geothermal resources exploitation and utilization[J]. China Basic Science, 2023, 25(3): 11-22. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB202303002.htm
    [4]
    刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. doi: 10.19509/j.cnki.dzkq.2021.0316

    LIU D M, ZHANG C S, SUN M H, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0316
    [5]
    汪集暘, 庞忠和, 程远志, 等. 全球地热能的开发利用现状与展望[J]. 科技导报, 2023, 41(12): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202312001.htm

    WANG J Y, PANG Z H, CHENG Y Z, et al. Current state, utilization and prospective of global geothermal energy[J]. Science & Technology Review, 2023, 41(12): 5-11. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202312001.htm
    [6]
    朱喜, 王贵玲, 马峰, 等. 雄安新区地热资源潜力评价[J]. 地球科学, 2023, 48(3): 1093-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303018.htm

    ZHU X, WANG G L, MA F, et al. Evaluation of geothermal resources of the Xiongan new area[J]. Earth Science, 2023, 48(3): 1093-1106. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202303018.htm
    [7]
    杜垚森, 封优生, 伍晓龙, 等. 深部地热能开发保温管技术研究现状及发展趋势[J]. 钻探工程, 2022, 49(6): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC202206019.htm

    DU Y S, FENG Y S, WU X L, et al. Research status and consideration of thermal insulation pipe technology for deep geothermal energy development[J]. Drilling Engineering, 2022, 49(6): 138-145. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC202206019.htm
    [8]
    王贵玲, 杨轩, 马凌, 等. 地热能供热技术的应用现状及发展趋势[J]. 华电技术, 2021, 43(11): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SLDL202111003.htm

    WANG G L, YANG X, MA L, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021, 43(11): 15-24. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLDL202111003.htm
    [9]
    马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm

    MA F, LIN W J, LANG X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 2015, 34(6): 176-181. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm
    [10]
    宋先知, 许富强, 宋国锋. 废弃井地热能开发技术现状与发展建议[J]. 石油钻探技术, 2020, 48(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202006001.htm

    SONG X Z, XU F Q, SONG G F. Technical status and development suggestions in exploiting geothermal energy from abandoned wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1-7(in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202006001.htm
    [11]
    SOLTANI M, MORADI KASHKOOLI F, ALIAN FINI M, et al. A review of nanotechnology fluid applications in geothermal energy systems[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112729. doi: 10.1016/j.rser.2022.112729
    [12]
    CHAPPIDI S, KUMAR A, SINGH J. Geothermal energy extraction from abandoned oil and gas wells using mono and hybrid nanofluids[J]. Geothermics, 2023, 114: 102794. doi: 10.1016/j.geothermics.2023.102794
    [13]
    宣益民. 纳米流体能量传递理论与应用[J]. 中国科学(技术科学), 2014, 44(3): 269-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403006.htm

    XUAN Y M. An overview on nanofluids and applications[J]. Scientia Sinica (Technologica), 2014, 44(3): 269-279. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403006.htm
    [14]
    李强, 宣益民. 纳米流体对流换热的实验研究[J]. 工程热物理学报, 2002, 23(6): 721-723. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200206017.htm

    LI Q, XUAN Y M. Experimental investigation on convective heat transfer of nanofluids[J]. Journal of Engineering Thermophysics, 2002, 23(6): 721-723. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200206017.htm
    [15]
    CHOI U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme. Fed., 1995, 231(1): 99-105.
    [16]
    WONGCHAREE K, EIAMSA-ARD S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 742-748. doi: 10.1016/j.icheatmasstransfer.2011.03.011
    [17]
    贾东, 蔡淑红, 李献强, 等. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(增刊2): 540-549. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S2103.htm

    JIA D, CAI S H, LI X Q, et al. Research progress of nanofluid heat-conducting media[J]. Materials Reports, 2021, 35(S2): 540-549. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S2103.htm
    [18]
    朱大海, 于伟, 朱桂华, 等. 氧化铜形貌对纳米流体强化传热性能的影响[J]. 科学通报, 2020, 65(增刊1): 222-228. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2020Z1015.htm

    ZHU D H, YU W, ZHU G H, et al. Influence of copper oxide with different morphologies on heat transfer performance of nanofluids[J]. Chinese Science Bulletin, 2020, 65(S1): 222-228. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2020Z1015.htm
    [19]
    翟昊, 李娟, 朱章钰. 纳米流体在微通道换热中的研究进展[J]. 热能动力工程, 2019, 34(12): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201912001.htm

    ZHAI H, LI J, ZHU Z Y. Research progress of nanofluids heat transfer in microchannel[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(12): 1-8. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201912001.htm
    [20]
    KAPICIOĜLU A, ESEN H. Experimental investigation on using Al2O3/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers[J]. Applied Thermal Engineering, 2020, 165: 114559. doi: 10.1016/j.applthermaleng.2019.114559
    [21]
    MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids[J]. International Journal of Thermal Sciences, 2005, 44(4): 367-373. doi: 10.1016/j.ijthermalsci.2004.12.005
    [22]
    ABBASIAN ARANI A A, AMANI J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid[J]. Experimental Thermal and Fluid Science, 2013, 44: 520-533. doi: 10.1016/j.expthermflusci.2012.08.014
    [23]
    DIGLIO G, ROSELLI C, SASSO M, et al. Borehole heat exchanger with nanofluids as heat carrier[J]. Geothermics, 2018, 72: 112-123. doi: 10.1016/j.geothermics.2017.11.005
    [24]
    TIWARI A K, GHOSH P, SARKAR J. Performance comparison of the plate heat exchanger using different nanofluids[J]. Experimental Thermal and Fluid Science, 2013, 49: 141-151. doi: 10.1016/j.expthermflusci.2013.04.012
    [25]
    MAGHRABIE H M, ATTALLA M, A-A MOHSEN A. Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids[J]. Applied Thermal Engineering, 2021, 182: 116013. doi: 10.1016/j.applthermaleng.2020.116013
    [26]
    MAHIAN O, KIANIFAR A, SAHIN A Z, et al. Performance analysis of a minichannel-based solar collector using different nanofluids[J]. Energy Conversion and Management, 2014, 88: 129-138. doi: 10.1016/j.enconman.2014.08.021
    [27]
    SAJID M U, ALI H M. Recent advances in application of nanofluids in heat transfer devices: A critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 556-592. doi: 10.1016/j.rser.2018.12.057
    [28]
    DHARMAKKAN N, SRINIVASAN P M, MUTHUSAMY S, et al. A case study on analyzing the performance of microplate heat exchanger using nanofluids at different flow rates and temperatures[J]. Case Studies in Thermal Engineering, 2023, 44: 102805. doi: 10.1016/j.csite.2023.102805
    [29]
    SUBRAMANI J, NAGARAJAN P K, MAHIAN O, et al. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime[J]. Renewable Energy, 2018, 119: 19-31. doi: 10.1016/j.renene.2017.11.079
    [30]
    SUN X H, YAN H B, MASSOUDI M, et al. Numerical simulation of nanofluid suspensions in a geothermal heat exchanger[J]. Energies, 2018, 11(4): 919. doi: 10.3390/en11040919
    [31]
    李金玺, 孙东, 李智武, 等. 四川盆地水热型地热资源构造成因模式[J]. 地质科学, 2023, 58(2): 438-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202302006.htm

    LI J X, SUN D, LI Z W, et al. Structural genetic model of geothermal resources in Sichuan Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2023, 58(2): 438-460. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202302006.htm
    [32]
    原若溪, 马峰, 张薇, 等. 地热储层改造技术研究进展[J]. 科技导报, 2022, 40(20): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202220007.htm

    YUAN R X, MA F, ZHANG W, et al. Application of geothermal reservoir modification technologies and prospective[J]. Science & Technology Review, 2022, 40(20): 52-64. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202220007.htm
    [33]
    MONZO P, MOGENSEN P, ACUNA J, et al. A novel numerical approach for imposing a temperature boundary condition at the borehole wall in borehole fields[J]. Geothermics, 2015, 56: 35-44.
    [34]
    毛绪美, 叶建桥, 董亚群, 等. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法[J]. 地质科技通报, 2022, 41(1): 137-145. doi: 10.19509/j.cnki.dzkq.2022.0014

    MAO X M, YE J Q, DONG Y Q, et al. Geothermal driving force: A new additional non-gravity action driving the migration of geothermal water in the Xinzhou geothermal field of Yangjiang, Guangdong[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 137-145. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0014
    [35]
    SHEREMET M A, POP I, MAHIAN O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: Application in solar collectors[J]. International Journal of Heat and Mass Transfer, 2018, 116: 751-761.
    [36]
    WANG R J, CHEN T C, QI J L, et al. Investigation on the heat transfer enhancement by nanofluid under electric field considering electrophorestic and thermophoretic effect[J]. Case Studies in Thermal Engineering, 2021, 28: 101498.
    [37]
    FULE P J, BHANVASE B A, SONAWANE S H. Experimental investigation of heat transfer enhancement in helical coil heat exchangers using water based CuO nanofluid[J]. Advanced Powder Technology, 2017, 28(9): 2288-2294.
    [38]
    KUMAR N, SONAWANE S S, SONAWANE S H. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid[J]. International Communications in Heat and Mass Transfer, 2018, 90: 1-10.
    [39]
    JANG S P, CHOI S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84(21): 4316-4318.
    [40]
    ADAMCZYK Z, WEROŃSKI P. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863.
    [41]
    ADAMCZYK Z, WEROŃSKI P. Application of the DLVO theory for particle deposition problems[J]. Advances in Colloid and Interface Science, 1999, 83(1/3): 137-226.
    [42]
    COURSEY J S, KIM J. Nanofluid boiling: The effect of surface wettability[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1577-1585.
    [43]
    李泽梁, 李俊明, 胡海滔, 等. CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响[J]. 热科学与技术, 2005, 4(2): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-RKXS200502012.htm

    LI Z L, LI J M, HU H T, et al. Influence of ingredients of copper oxide nano-suspension on stability and viscosity of suspension[J]. Journal of Thermal Science and Technology, 2005, 4(2): 157-163. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RKXS200502012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(229) PDF Downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return