Volume 43 Issue 3
May  2024
Turn off MathJax
Article Contents
LUO Yanan, JIANG Kunqing, HUANG Sihao, FENG Bo, BU Xianbiao. Safety analysis of geothermal water recharge coupled with CO2 geological storage system[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 59-67. doi: 10.19509/j.cnki.dzkq.tb20230618
Citation: LUO Yanan, JIANG Kunqing, HUANG Sihao, FENG Bo, BU Xianbiao. Safety analysis of geothermal water recharge coupled with CO2 geological storage system[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 59-67. doi: 10.19509/j.cnki.dzkq.tb20230618

Safety analysis of geothermal water recharge coupled with CO2 geological storage system

doi: 10.19509/j.cnki.dzkq.tb20230618
More Information
  • Author Bio:

    LUO Yanan, E-mail: luoyn@ms.giec.ac.cn

  • Corresponding author: BU Xianbiao, E-mail: buxb@ms.giec.ac.cn
  • Received Date: 03 Nov 2023
  • Accepted Date: 25 Jan 2024
  • Rev Recd Date: 25 Jan 2024
  • Objective

    In well-trapped hydrothermal geothermal reservoirs, the research on injecting CO2 into reservoirs simultaneously with recharge water is carried out, which has both economic and environmental benefits for carbon sequestration.

    Methods

    A 3D reservoir model was established to study the CO2 breakthrough time and the migration of CO2-rich brine in a reservoir under different well spacings, formation inclination angles, sieve tube positions and exploitation and reinjection rates.

    Results

    The results show that (1) when the exploitation and reinjection rate is 20 kg/s and the well spacing is 1 200 m within 20 years of operation, there is no CO2 breakthrough. (2) In inclined formations, when the recharge well is located downstream of the production well, as the formation inclination angle increases, the CO2 breakthrough time increases, and the migration distance of carbonated water increases along the downdip direction of the formation. (3) Considering the impact of the screen position on the breakthrough time and CO2 mass fraction in the production well after breakthrough, it is beneficial to ensure the safety and effectiveness of CO2 geological storage when the recharge well sieve tube is located 30 m above the reservoir and the production well sieve is located 30 m below the reservoir. (4) The exploitation and reinjection rates have greater impacts on the CO2 breakthrough time. When the exploitation and reinjection rate is 12 kg/s, there is no CO2 breakthrough. When the exploitation and reinjection rate increases to 28 kg/s, the breakthrough time decreases to 11.8 years.

    Conclusion

    Therefore, in practical engineering applications, the CO2 breakthrough time can be delayed, and the safety of CO2 geological storage can be improved through the study of operating parameters and the inherent characteristics of the formation.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    YANG B L, SHAO C, HU X L, et al. Advances in carbon dioxide storage projects: Assessment and perspectives[J]. Energy & Fuels, 2023, 37(3): 1757-1776.
    [2]
    LI M W, QIN J R, HAN Z Y, et al. Low-carbon economic optimization method for integrated energy systems based on life cycle assessment and carbon capture utilization technologies[J]. Energy Science & Engineering, 2023, 11(11): 4238-4255.
    [3]
    章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5): 190-198. doi: 10.19509/j.cnki.dzkq.2022.0193

    ZHANG C, XIAO Q, SUN P A, et al. Progress on karst carbon cycle and carbon sink effect study and perspective[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 190-198. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0193
    [4]
    PARK J, PARK S S, CHO J, et al. Analysis on caprock and aquifer properties related with leakage during CO2 storage[J]. Geosystem Engineering, 2016, 19(4): 188-196. doi: 10.1080/12269328.2016.1165632
    [5]
    王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007002.htm

    WANG G L, LIN W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007002.htm
    [6]
    王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    WANG G L, LIU Y G, ZHU X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
    [7]
    BROWN D. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Anon. Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering. Stanford, California, United States: Stanford University, 2000: 233-238.
    [8]
    PRUESS K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454.
    [9]
    RANDOLPH J B, SAAR M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration[J]. Energy Procedia, 2011, 4: 2206-2213.
    [10]
    PAN C J, CHÁVEZ O, ROMERO C E, et al. Heat mining assessment for geothermal reservoirs in Mexico using supercritical CO2 injection[J]. Energy, 2016, 102: 148-160.
    [11]
    SALIMI H, WOLF K H. Integration of heat-energy recovery and carbon sequestration[J]. International Journal of Greenhouse Gas Control, 2012, 6: 56-68.
    [12]
    GANJDANESH R, BRYANT S L, ORBACH R L, et al. Coupled carbon dioxide sequestration and energy production from geopressured/geothermal aquifers[J]. SPE Journal, 2014, 19(2): 239-248.
    [13]
    BUSCHECK T A, CHEN M, SUN Y, et al. Two-stage, integrated, geothermal-CO2 storage reservoirs: An approach for sustainable energy production, CO2-sequestration security, and reduced environmental risk[R]. Livermore, California, United States: Lawrence Livermore National Lab. (LLNL), 2012.
    [14]
    JING J, YANG Y L, TANG Z H. Assessing the influence of injection temperature on CO2 storage efficiency and capacity in the sloping formation with fault[J]. Energy, 2021, 215: 119097.
    [15]
    WANG F G, JING J, XU T F, et al. Impacts of stratum dip angle on CO2 geological storage amount and security[J]. Greenhouse Gases (Science and Technology), 2016, 6(5): 682-694.
    [16]
    WANG F, JING J, YANG Y, et al. Impacts of injection pressure of a dip-angle sloping strata reservoir with low porosity and permeability on CO2 injection amount[J]. Greenhouse Gases Science & Technology, 2017, 7(1): 92-105.
    [17]
    林鹏威, 曾平, 林署炯, 等. 增强型地热系统热储层研究进展[J]. 中外能源, 2015, 20(10): 21-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201510007.htm

    LIN P W, ZENG P, LIN S J, et al. Advances in research on reservoirs of enhanced geothermal system[J]. Sino-Global Energy, 2015, 20(10): 21-30. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201510007.htm
    [18]
    PRUESS K. ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2[M]. Berkeley, CA, United States: Lawrence Berkeley National Laboratory, 2005.
    [19]
    ZHANG K, WU Y S, PRUESS K. User's guide for TOUGH2-MP: A massively parallelversion of the TOUGH2 code[R]. Berkeley, CA, United States: Lawrence Berkeley National Laboratory, 2008.
    [20]
    杨艳林, 许天福, 靖晶. OpenMP在CO2地质储存数值模拟并行计算中的应用[J]. 水文地质工程地质, 2018, 45(5): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805019.htm

    YANG Y L, XU T F, JING J. Application of parallel computing with OpenMP in numerical simulation of CO2 geological storage[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 129-135. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805019.htm
    [21]
    PRUESS K, OLDENBURG C, MORIDIS G. TOUGH2 user's guide version 2[R]. Berkeley, CA, United States: Lawrence Berkeley National Laboratory, 1999.
    [22]
    李红斌, 王贵文, 庞小娇, 等. 苏北盆地古近系阜宁组页岩工程品质测井评价[J]. 地质科技通报, 2023, 42(3): 311-322. doi: 10.19509/j.cnki.dzkq.tb20210692

    LI H B, WANG G W, PANG X J, et al. Logging evaluation of the engineering quality of the Paleogene Funing Formation oil shales in the Subei Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 311-322. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20210692
    [23]
    莫绍星, 龙星皎, 李瀛, 等. 基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1647-1658. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405025.htm

    MO S X, LONG X J, LI Y, et al. Numerical modeling of CO2 sequestration in the saline aquifer of Yancheng Formation in Subei Basin using TOUGHREACT-MP[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5): 1647-1658. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405025.htm
    [24]
    BU F, XU T, WANG F, et al. Influence of highly permeable faults within a low-porosity and low-permeability reservoir on migration and storage of injected CO2[J]. Geofluids, 2016, 16(4): 769-781.
    [25]
    MUKHOPADHYAY S, DOUGHTY C A, BACON D H, et al. Preliminary model comparison results from the Sim-SEQ project using TOUGH2, STOMP, Eclipse, and VESA approach[R]. Richland, WA, United States: Pacific Northwest National Laboratory, 2013.
    [26]
    SPYCHER N, PRUESS K. CO2-H2O mixtures in the geological sequestration of CO2: Ⅱ. Partitioning in chloride brines at 12-100 ℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3309-3320.
    [27]
    王福刚, 郭兵, 杨永智, 等. 中高渗倾斜地层与水平地层中CO2地质封存的差异性对比[J]. 地球科学与环境学报, 2020, 42(2): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002009.htm

    WANG F G, GUO B, YANG Y Z, et al. Comparison on the difference of CO2 geological storage between sloping and horizontal strata with mid-high permeability[J]. Journal of Earth Sciences and Environment, 2020, 42(2): 246-255. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202002009.htm
    [28]
    JING J, YANG Y L, TANG Z H, et al. Impacts of salinity on CO2 spatial distribution and storage amount in the formation with different dip angles[J]. Environmental Science and Pollution Research International, 2019, 26(22): 22173-22188.
    [29]
    JING J, TANG Z H, YANG Y L, et al. Impact of formation slope and fault on CO2 storage efficiency and containment at the Shenhua CO2 geological storage site in the Ordos Basin, China[J]. International Journal of Greenhouse Gas Control, 2019, 88: 209-225.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(161) PDF Downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return