Volume 43 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
ZHANG Suisui, FAN Changyu, WANG Deying, CHEN Lei, WANG Qiming, WANG Zhenliang, WANG Feilong, YAN Xinyu. A new method for predicting shale pore pressure: A case study of the Bodong Depression in the Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 27-38. doi: 10.19509/j.cnki.dzkq.tb20230638
Citation: ZHANG Suisui, FAN Changyu, WANG Deying, CHEN Lei, WANG Qiming, WANG Zhenliang, WANG Feilong, YAN Xinyu. A new method for predicting shale pore pressure: A case study of the Bodong Depression in the Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 27-38. doi: 10.19509/j.cnki.dzkq.tb20230638

A new method for predicting shale pore pressure: A case study of the Bodong Depression in the Bohai Bay Basin

doi: 10.19509/j.cnki.dzkq.tb20230638
More Information
  • Author Bio:

    ZHANG Suisui, E-mail: 1779510038@qq.com

  • Corresponding author: FAN Changyu, E-mail: 330413776@qq.com
  • Received Date: 15 Nov 2023
  • Accepted Date: 03 Jan 2024
  • Rev Recd Date: 26 Dec 2023
  • Objective

    China's oil and gas exploration is advancing towards the field of shale oil and gas. Overpressure is commonly developed in organic shale, and the lack of prediction methods for shale pore pressure restricts the research on shale oil and gas.

    Methods

    This article analyses the physical response characteristics of rock to hydrocarbon generation, pressurization and disequilibrium compaction. Based on density and sound velocity data, the differential responses of hydrocarbon generation pressurization and disequilibrium compaction pressurization were analysed. The hydrocarbon generation pressurization amount is calculated using sound velocity and density, and the disequilibrium compaction is calculated using the density data. Finally, the sound velocity rebound method was established. This article selects the Bodong Depression, which has superior hydrocarbon generation conditions, as a case study. First, comprehensive mudstone compaction curves, loading-unloading curves, and sound velocity-density diagrams are used to comprehensively identify the cause of overpressure. Then, the sound velocity rebound method is used to quantitatively calculate the pressure increase and formation pore pressure of a single well under compaction and hydrocarbon generation, and the results are compared with those of numerical simulations and conventional calculation methods.

    Results

    Taking the LD21-A well as an example, shale overpressure is caused by a combination of hydrocarbon generation and disequilibrium compaction. The pressure prediction results show that the overpressure of nonsource rock layers is contributed by the disequilibrium compaction. The overpressure of the source rock formation is contributed by hydrocarbon generation and disequilibrium compaction, with hydrocarbon generation pressurization mainly distributed between 5 MPa and 15 MPa (accounting for approximately 35% to 65%), and the measured pressure point hydrocarbon generation pressurization is 11.09 MPa (accounting for 45%).

    Conclusion

    This new method is vital of importance for the research of both shale and conventional oil and gas fields.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    曾联波, 马诗杰, 田鹤, 等. 富有机质页岩天然裂缝研究进展[J]. 地球科学, 2023, 48(7): 2427-2442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307001.htm

    ZENG L B, MA S J, TIAN H, et al. Research progress of natural fractures in organic rich shale[J]. Earth Science, 2023, 48(7): 2427-2442. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202307001.htm
    [2]
    周立宏, 陈长伟, 甘华军, 等. 歧口凹陷沙一下亚段页岩形成环境及页岩油潜力综合评价[J]. 地质科技通报, 2022, 41(5): 19-30. doi: 10.19509/j.cnki.dzkq.2022.0233

    ZHOU L H, CHEN C W, GAN H J, et al. Shale formation environment and comprehensive evaluation of shale oil potential of the Lower First Member of Shahejie Formation in Qikou Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 19-30. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0233
    [3]
    辛红刚, 田杨, 冯胜斌, 等. 鄂尔多斯盆地典型夹层型页岩油地质特征及潜力评价: 以宁228井长7段为例[J]. 地质科技通报, 2023, 42(3): 114-124. doi: 10.19509/j.cnki.dzkq.tb20220224

    XIN H G, TIAN Y, FENG S B, et al. Geological characteristics and potential evaluation of typical interlayer shale oil in the Ordos Basin: A case study of the Chang 7 Member of Well Ning228[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 114-124. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220224
    [4]
    WANG P W, CHEN Z H, HU K Z, et al. The impact of organic pores on estimation of overpressure generated by gas generation in organic-rich shale: Example from Devonian Duvernay Shale, Western Canada Sedimentary Basin[J]. AAPG Bulletin, 2023, 107(9): 1477-1492. doi: 10.1306/12202220005
    [5]
    BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2): 174-177. doi: 10.1190/1.1452608
    [6]
    TINGAY M R P, MORLEY C K, LAIRD A, et al. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin, 2013, 97(4): 639-672. doi: 10.1306/09041212032
    [7]
    TINGAY M R P, HILLIS R R, SWARBRICK R E, et al. Origin of overpressure and pore-pressure prediction in the Baram Province, Brunei[J]. AAPG Bulletin, 2009, 93(1): 51-74. doi: 10.1306/08080808016
    [8]
    HOTTMAN C E, JOHNSON R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology, 1965, 17(6): 717-722. doi: 10.2118/1110-PA
    [9]
    LIMPORNPIPAT O, LAIRD A, TINGAY M R, et al. Overpressures in the northern Malay Basin: Part 2-Implications for pore pressure prediction[C]//Anon. International Petroleum Technology Conference, 2012: IPIC-15350-MS.
    [10]
    EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972, 24(8): 929-934. doi: 10.2118/3719-PA
    [11]
    SUWANNASRI K, PROMRAK W, UTITSAN S, et al. Reducing the variation of Eaton's exponent for overpressure prediction in a basin affected by multiple overpressure mechanisms[J]. Interpretation, 2014, 2(1): SB57-SB68. doi: 10.1190/INT-2013-0100.1
    [12]
    HANTSCHEL T, KAUERAUF A I. Fundamentals of basin and petroleum systems modeling[M]. Berlin, Heidelberg: Springer, 2009.
    [13]
    LI C, ZHANG L K, LUO X R, et al. Overpressure generation by disequilibrium compaction or hydrocarbon generation in the Paleocene Shahejie Formation in the Chezhen Depression: Insights from logging responses and basin modeling[J]. Marine and Petroleum Geology, 2021, 133: 105258. doi: 10.1016/j.marpetgeo.2021.105258
    [14]
    VAN RUTH P, HILLIS R, TINGATE P. The origin of overpressure in the Carnarvon Basin, Western Australia: Implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3): 247-257. doi: 10.1144/1354-079302-562
    [15]
    王震亮, 孙明亮, 耿鹏, 等. 准南地区异常地层压力发育特征及形成机理[J]. 石油勘探与开发, 2003, 30(1): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200301012.htm

    WANG Z L, SUN M L, GENG P, et al. The development features and formation mechanisms of abnormal high formation pressure in southern Junggar region[J]. Petroleum Exploration and Development, 2003, 30(1): 32-34. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200301012.htm
    [16]
    陈荷立. 泥岩压实资料在油气勘探构造研究中的应用[J]. 石油勘探与开发, 1980, 7(5): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198005001.htm

    CHEN H L. Application of mudstone compaction data in structural research of oil and gas exploration[J]. Petroleum Exploration and Development, 1980, 7(5): 16-24. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198005001.htm
    [17]
    郭小文, 何生, 郑伦举, 等. 生油增压定量模型及影响因素[J]. 石油学报, 2011, 32(4): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104013.htm

    GUO X W, HE S, ZHENG L J, et al. A quantitative model for the overpressure caused by oil generation and its influential factors[J]. Acta Petrolei Sinica, 2011, 32(4): 637-644. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104013.htm
    [18]
    LIU J D, LIU T, LIU H, et al. Overpressure caused by hydrocarbon generation in the organic-rich shales of the Ordos Basin[J]. Marine and Petroleum Geology, 2021, 134: 105349. doi: 10.1016/j.marpetgeo.2021.105349
    [19]
    赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998.

    ZHAO J Z, LI J, XU Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998. (in Chinese with English abstract)
    [20]
    腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    BORJIGIN T, LU L F, YU L J, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm
    [21]
    SMITH J E. The dynamics of shale compaction and evolution of pore-fluid pressures[J]. Mathematical Geology, 1971, 3(3): 239-263. doi: 10.1007/BF02045794
    [22]
    FAN C Y, WANG G. The significance of a piecemeal geometric model of mudstone compaction: Pinghu Slope, Xihu Depression, eastern China[J]. Marine and Petroleum Geology, 2021, 131: 105138. doi: 10.1016/j.marpetgeo.2021.105138
    [23]
    侯志强, 张书平, 李军, 等. 西湖凹陷中部西斜坡地区超压成因机制[J]. 石油学报, 2019, 40(9): 1059-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909004.htm

    HOU Z Q, ZHANG S P, LI J, et al. Genetic mechanism of overpressures in the west slope of central Xihu Sag[J]. Acta Petrolei Sinica, 2019, 40(9): 1059-1068. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909004.htm
    [24]
    张凤奇, 孙越, 刘思瑶, 等. 构造抬升区泥页岩脆性破裂泄压特征及对页岩油富集的影响: 以延安地区延长组长73亚段为例[J]. 石油实验地质, 2023, 45(5): 936-951. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202305011.htm

    ZHANG F Q, SUN Y, LIU S Y, et al. Characteristics of pressure relief induced by shale brittle fracture in tectonic uplift area and its influence on shale oil enrichment: A case study of Chang 73 sub-member of Yanchang Formation in Yan'an area[J]. Petroleum Geology and Experiment, 2023, 45(5): 936-951. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202305011.htm
    [25]
    LUO Y, LIU H P, ZHAO Y C, et al. Reevaluation of the origin of overpressure in the inter-salt shale-oil reservoir in Liutun Sag, Dongpu Depression, China[J]. Journal of Petroleum Science and Engineering, 2016, 146: 1092-1100.
    [26]
    BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling&Completion, 1995, 10(2): 89-95.
    [27]
    FAN C Y, WANG Z L, WANG A G, et al. Identification and calculation of transfer overpressure in the northern Qaidam Basin, Northwest China[J]. AAPG Bulletin, 2016, 100(1): 23-39.
    [28]
    陈荷立, 崔荫松, 宋国初. 临河坳陷泥岩压实与油气运聚条件研究[J]. 石油学报, 1993, 14(2): 32-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199302003.htm

    CHEN H L, CUI Y S, SONG G C. A study of mudstone compaction and condition of hydrocarbon migration and accumulation in the Linhe Depression[J]. Acta Petrolei Sinica, 1993, 14(2): 32-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199302003.htm
    [29]
    韩晓洁, 范昌育, 高潮, 等. 构造抬升区欠压实超压恢复方法: 以鄂尔多斯盆地下寺湾地区延长组为例[J]. 天然气地球科学, 2023, 34(7): 1163-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202307012.htm

    HAN X J, FAN C Y, GAO C, et al. Restoration method of disequilibrium compaction overpressure in tectonically uplifted area: A case study of Yanchang Formation in Xiasiwan area, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(7): 1163-1172. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202307012.htm
    [30]
    BOWERS G L, JOHN KATSUBE T. The role of shale pore structure on the sensitivity of wire-line logs to overpressure[J]. AAPG Memoir, 2002, 76: 43-60.
    [31]
    张旭友, 范彩伟, 郭小文, 等. 莺歌海盆地中央底辟带乐东区莺歌海组超压成因及相对贡献定量化评价[J/OL]. 地球科学: (2023-11-04)[2024-01-09] http://kns.cnki.net/kcms/detail/42.1874.P.20220217.1915.031.html.

    ZHANG X Y, FAN C W, GUO X W, et al. Overpressure mechanisms and quantitative evaluation of the relative contribution for Yinggehai Formation in Ledong area of the Central Diapir Zone, Yinggehai Basin[J/OL]. Earth Scinece: (2023-11-04)[2024-01-09] http://kns.cnki.net/kcms/detail/42.1874.P.20220217.1915.031.html. (in Chinese with English abstract)
    [32]
    TERZAGHI K. Theoretical soil mechanics[M]. Hoboken: John Wiley&Sons, Inc., 1943.
    [33]
    郭喜浩, 徐昉昊, 黄晓波, 等. 基于多元统计分析的油-源对比: 以渤海湾盆地渤东凹陷为例[J]. 石油与天然气地质, 2022, 43(5): 1259-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205020.htm

    GUO X H, XU F H, HUANG X B, et al. Oil-source correlation based on multivariate statistical analysis: A case study of the Bodong Sag, Bohai Bay Basin[J]. Oil&Gas Geology, 2022, 43(5): 1259-1270. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202205020.htm
    [34]
    徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm

    XU C G, YU H B, WANG J, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
    [35]
    李宏义, 刘丽芳, 吴克强, 等. 渤海海域渤东凹陷烃源岩特征与勘探潜力[J]. 地质科技情报, 2015, 34(6): 131-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506018.htm

    LI H Y, LIU L F, WU K Q, et al. Characteristics of source rocks and exploration potential in Bodong Sag, Bohai Sea area[J]. Geological Science and Technology Information, 2015, 34(6): 131-135. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506018.htm
    [36]
    李伟, 陈竹新, 黄平辉, 等. 中国中西部典型前陆盆地超压体系形成机制与大气田关系[J]. 石油勘探与开发, 2021, 48(3): 536-548. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103010.htm

    LI W, CHEN Z X, HUANG P H, et al. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development, 2021, 48(3): 536-548. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103010.htm
    [37]
    李超, 张立宽, 罗晓容, 等. 泥岩压实研究中有机质导致声波时差异常的定量校正方法[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201603010.htm

    LI C, ZHANG L K, LUO X R, et al. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(3): 77-87. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201603010.htm
    [38]
    王刚, 范昌育, 李子龙, 等. 强挤压型盆地最大埋深期泥岩压实重建及其油气地质意义: 以库车前陆盆地为例[J]. 天然气工业, 2021, 41(10): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202110008.htm

    WANG G, FAN C Y, LI Z L, et al. Reconstruction of mudstone compaction in the maximum burial depth period of strongly compressional basin and its petroleum geological implications: Take the Kuqa foreland basin as an example[J]. Natural Gas Industry, 2021, 41(10): 29-38. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202110008.htm
    [39]
    LUO X R, VASSEUR G. Geopressuring mechanism of organic matter cracking: Numerical modeling[J]. AAPG Bulletin, 1996, 80(6): 856-873.
    [40]
    BERG R R, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(134) PDF Downloads(257) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return