Volume 43 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
ZHENG Xiaoxuan, TIAN Jixian, TIAN Cong, JIANG Zhengwen, YANG Lei, HE Qiufang, XUE Honglei. Evaluation of the characteristics of biogenic gas production based on the CDOM spectral characteristics of shales[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 128-140. doi: 10.19509/j.cnki.dzkq.tb20230652
Citation: ZHENG Xiaoxuan, TIAN Jixian, TIAN Cong, JIANG Zhengwen, YANG Lei, HE Qiufang, XUE Honglei. Evaluation of the characteristics of biogenic gas production based on the CDOM spectral characteristics of shales[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 128-140. doi: 10.19509/j.cnki.dzkq.tb20230652

Evaluation of the characteristics of biogenic gas production based on the CDOM spectral characteristics of shales

doi: 10.19509/j.cnki.dzkq.tb20230652
More Information
  • Objective

    The composition and degradability of dissolved organic matter (DOM) play a critical role in evaluating biogenic gas production during shale gas exploration. A simple and effective method needs to be developed to assess the composition, functional groups and microbial activity of DOM, which will provide crucial valuable information concerning the gas production mechanism in the field of biogenic shale gas.

    Methods

    Shale samples were collected from depths of 1 219 m to 1 309 m from the ST1 exploration well located at the edge of the Sebei No.1 gas field in the Qaidam Basin. According to the 3D fluorescence of the extraction and emission matrix (EEM) and the UV visible absorption spectrum characteristics of chromophoric dissolved organic matter (CDOM), the composition, functional group and degradation characteristics of CDOM were analysed to determine the distribution of methanol formation substrates.

    Results

    The DOM in the samples mainly consisted of the small molecular tryptophan-like fluorescent components C1 and C3, which are readily degradable by biotic processes and account for 70.54% of the total fluorescence intensity. The fluorescence components, fluorescence parameters (HIX, BIX), and absorbance ratios (E253/E203, SUVA254) confirmed that the core layers at depths of 1 219-1 222 m and 1 285-1 301 m were potential effective gas-generating formations. These layers contain low amounts of humified organic matter, weak aromaticity and high amounts of methanol functional groups. The active gas-generating formations are generally consistent with those in previous reports.

    Conclusion

    The results indicated that the CDOM spectrum is a valuable method for exploring the methanol formation substrate distribution and microbial activity. The CDOM-EEM method has the potential to serve as an effective indicator of the methanol formation characteristics of DOM in mud shale and provides an effective and essential way to assess geochemical-based gas production capacity in hydrocarbon source rocks.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    GAO L, BRASSELL S C, MASTALEZ M, et al. Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA[J]. International Journal of Coal Geology, 2013, 107: 152-164. doi: 10.1016/j.coal.2012.09.002
    [2]
    王必金, 包汉勇, 刘皓天, 等. 川东红星地区吴家坪组富有机质页岩特征与发育控制因素[J]. 地质科技通报, 2023, 42(5): 70-81. doi: 10.19509/j.cnki.dzkq.tb20230149

    WANG B J, BAO H Y, LIU H T, et al. Characteristics and controlling factors of the organic-rich shale in the Wujiaping Formation of the Hongxing area, eastern Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 70-81. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230149
    [3]
    高天, 刘睿, 徐璐, 等. 基于三轴压缩模拟试验的页岩低阻成因机制[J/OL]. 地质科技通报: 1-14. https://doi.org/10.19509/j.cnki.dzkq.tb20230533.

    GAO T, LIU R, XU L, et al. Genetic mechanism of low resistance in shale analyzed by triaxial compression test[J/OL]. Bulletin of Geological Science and Technology, 1-14. https://doi.org/10.19509/j.cnki.dzkq.tb20230533. (in Chinese with English abstract)
    [4]
    张勇年, 连运晓, 顾端阳, 等. 涩北一号气田第四系Ⅲ-3层组剩余气定量描述[J]. 天然气技术与经济, 2019, 13(5): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201905010.htm

    ZHANG Y N, LIAN Y X, GU D Y, et al. Quantitative characterization of remaining gas in Ⅲ-3 Member, No.1 Sebei gas field[J]. Natural Gas Technology and Economy, 2019, 13(5): 54-61. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201905010.htm
    [5]
    QIAO J, GROHMANN S, BANIASAD A, et al. High microbial gas potential of Pleistocene lacustrine deposits in the central Qaidam Basin, China: An organic geochemical and petrographic assessment[J]. International Journal of Coal Geology, 2021, 245: 103818. doi: 10.1016/j.coal.2021.103818
    [6]
    YIN M, HUANG H, CHENG L. Molecular fingerprints in shales from the Sanhu biogenic gas fields in eastern Qaidam Basin, NW China: Evidence of biodegradation of shale organic matter[J]. Marine and Petroleum Geology, 2021, 133: 105289. doi: 10.1016/j.marpetgeo.2021.105289
    [7]
    杨海军, 蔡振忠, 李勇, 等. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义[J]. 地质科技通报, 2024, 43(3): 81-93. doi: 10.19509/j.cnki.dzkq.tb20220705

    YANG H J, CAI Z Z, LI Y, et al. Organic geochemical characters of source rock and significance for exploration of the Tumuxiuke Formation in Fuman area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 81-93. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220705
    [8]
    田巍, 陈孝红, 李旭兵, 等. 湘中涟源凹陷下石炭统天鹅坪组页岩气成藏条件及主控因素[J]. 地质科技通报, 2021, 40(5): 54-63. doi: 10.19509/j.cnki.dzkq.2021.0504

    TIAN W, CHEN X H, LI X B, et al. Accumulation conditions and main factors of the Lower Carboniferous Tianeping Formation in Lianyuan Sag in the middle of Hunan Province[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 54-63. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0504
    [9]
    张谦, 金之钧, 朱如凯, 等. 岩石热解方法应用于页岩油气研究需注意的几个问题[J]. 石油与天然气地质, 2023, 44(4): 1020-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202304014.htm

    ZHANG Q, JIN Z J, ZHU R K, et al. Remarkable issues of rock-eval pyrolysis in the assessment of shale oil/gas[J]. Oil & Gas Geology, 2023, 44(4): 1020-1032. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202304014.htm
    [10]
    陈华强, 于赤灵, 卢鸿, 等. 有机质氮同位素与蛋白质含量在生物气源岩评价中的应用: 以柴达木盆地涩北一号构造带为例[J]. 石油天然气学报, 2011, 33(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201101006.htm

    CHEN H Q, YU C L, LU H, et al. Application of organic nitrogen isotopes and protein content in evaluating biological gas source rocks: A case study of Sebei No.1 tectonic belt in Qaidam Basin[J]. Journal of Oil and Gas Technology, 2011, 33(1): 21-25. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201101006.htm
    [11]
    刘慧敏, 张力, 樊金龙. 石油产品中间馏分芳烃含量分析方法[J]. 炼油与化工, 2023, 34(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJY202305001.htm

    LIU H M, ZHANG L, FAN J L. Analysis method of aromatic hydrocarbon content in middle distillates of petroleum products[J]. Refining and Chemical Industry, 2023, 34(5): 1-4. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HLJY202305001.htm
    [12]
    李国欣, 张斌, 伍坤宇, 等. 柴达木盆地咸化湖盆低有机质丰度烃源岩高效生烃模式[J]. 石油勘探与开发, 2023, 50(5): 898-910. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202305003.htm

    LI G X, ZHANG B, WU K Y, et al. Low organic matter abundance and highly efficient hydrocarbon generation of saline source rock in the Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(5): 898-910. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202305003.htm
    [13]
    SHUAI Y, ZHANG S, MA D, et al. Quaternary biogenic gases in the Qaidam Basin, western China[J]. Bulletin of Canadian Petroleum Geology, 2015, 63(1): 75-83. doi: 10.2113/gscpgbull.63.1.75
    [14]
    张英, 李剑, 张奎, 等. 柴达木盆地三湖地区第四系生物气源岩中可溶有机质丰度及地质意义[J]. 地质学报, 2007, 81(12): 1716-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200712013.htm

    ZHANG Y, LI J, ZHANG K, et al. Organic matter abundance in Quternary source rocks and its application on assessment of biogenic gas in Sanhu Lake area, Qaidam Basin[J]. Acta Geologica Sinica, 2007, 81(12): 1716-1722. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200712013.htm
    [15]
    宋德康, 刘晓雪, 邵泽宇, 等. 柴达木盆地三湖坳陷第四系泥岩气藏成藏模式[J]. 油气藏评价与开发, 2023, 13(4): 495-504. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202304011.htm

    SONG D K, LIU X X, SHAO Z Y, et al. Accumulation mode of Quaternary mudstone gas reservoir in Sanhu Depression, Qaidam Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 495-504. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202304011.htm
    [16]
    魏国齐, 刘德来, 张英, 等. 柴达木盆地第四系生物气形成机理、分布规律与勘探前景[J]. 石油勘探与开发, 2005, 32(4): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504016.htm

    WEI G Q, LIU D L, ZHANG Y, et al. Formation mechanism, distribution feature and exploration prospect of the Quaternary biogenic gas in Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2005, 32(4): 84-89. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504016.htm
    [17]
    林培贤, 张霞, 林春明, 等. 柴达木盆地三湖坳陷诺北地区第四纪生物气形成及影响因素[J]. 高校地质学报, 2018, 24(6): 810-821. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806003.htm

    LIN P X, ZHANG X, LIN C M, et al. Formation mechanism and factors on the accumulations of the Quaternary biogenic gas in the Nuobei area in the Sanhu Depression, Qaidam Basin[J]. Geological Journal of China Universities, 2018, 24(6): 810-821. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806003.htm
    [18]
    帅燕华, 张水昌, 陈建平, 等. 深部生物圈层微生物营养底物来源机制及生物气源岩特征分析[J]. 中国科学: 地球科学, 2010, 40(7): 866-872. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201007007.htm

    SHUAI Y H, ZHANG S C, CHEN J P, et al. The source of nutrient substrates for microbes in the deep biosphere and the characteristics of biogenic gas source rock[J]. Science China (Earth Sciences), 2010, 40(7): 866-872. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201007007.htm
    [19]
    刘建, 徐莹, 赵智鹏, 等. 生物气源岩评价指标体系研究[J]. 海洋地质前沿, 2015, 31(1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201501003.htm

    LIU J, XU Y, ZHAO Z P, et al. Research of the evaluation indicator system for biogenic gas source rocks[J]. Marine Geology Frontiers, 2015, 31(1): 16-23. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201501003.htm
    [20]
    ZHANG Y, ZHANG E, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography, 2010, 55(6): 2645-2659. doi: 10.4319/lo.2010.55.6.2645
    [21]
    刘晓明, 余震, 周普雄, 等. 污泥超高温堆肥过程中DOM结构的光谱分析[J]. 环境科学, 2018, 39(8): 3807-3815. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201808043.htm

    LIU X M, YU Z, ZHOU P X, et al. Spectroscopic characterization of DOM during hyperthermophilic composting of sewage sludge[J]. Environmental Science, 2018, 39(8): 3807-3815. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201808043.htm
    [22]
    卢泽, 席北斗, 台德志, 等. 不同辅料与生物沥浸深度脱水污泥混合堆肥中溶解性有机质的光谱特征研究[J]. 光谱学与光谱分析, 2022, 42(7): 2120-2129. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202207019.htm

    LU Z, XI B D, TAI D Z, et al. Study on spectral characteristics of dissolved organic matter in composting with different conditioners and leached dewatered sludge[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2120-2129. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202207019.htm
    [23]
    AN S, CHEN F, CHEN S, et al. In-lake processing counteracts the effect of allochthonous input on the composition of color dissolved organic matter in a deep lake[J]. Science of the Total Environment, 2023, 856: 158970. doi: 10.1016/j.scitotenv.2022.158970
    [24]
    CHO H, CHOI Y, LEE S. Effect of pretreatment and operating conditions on the performance of membrane distillation for the treatment of shale gas wastewater[J]. Desalination, 2018, 437: 195-209. doi: 10.1016/j.desal.2018.03.009
    [25]
    KONG F X, SUN G D, CHEN J F, et al. Desalination and fouling of NF/low pressure RO membrane for shale gas fracturing flowback water treatment[J]. Separation and Purification Technology, 2018, 195: 216-223. doi: 10.1016/j.seppur.2017.12.017
    [26]
    DE NIEUWBURGH C P, WATSON J S, WEISS D J, et al. Environmental screening of water associated with shale gas extraction by fluorescence excitation emission matrix[J]. Environmental Science (Water Research & Technology), 2022, 8(10): 2196-2206.
    [27]
    YANG H, HUANG W, YANG P. Shale gas fracturing flowback water deep treatment engineering: A case study[J]. Environmental Science (Water Research & Technology), 2023, 9(7): 1870-1889.
    [28]
    WANG H, LU L, CHEN X, et al. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States[J]. Water Research, 2019, 164: 114942. doi: 10.1016/j.watres.2019.114942
    [29]
    TAMAMURA S, UENO A, ARAMAKI N, et al. Effects of oxidative weathering on the composition of organic matter in coal and sedimentary rock[J]. Organic Geochemistry, 2015, 81: 8-19. doi: 10.1016/j.orggeochem.2015.01.006
    [30]
    陈琰, 雷涛, 张国卿, 等. 柴达木盆地石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 2019, 24(2): 64-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201902007.htm

    CHEN Y, LEI T, ZHANG G Q, et al. The geological conditions, resource potential and exploration direction of oil in Qaidam Basin[J]. Marine Origin Petroleum Geology, 2019, 24(2): 64-74. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201902007.htm
    [31]
    SHAO Z, HE S, HOU L, et al. Dynamic accumulation of the Quaternary shale biogas in Sanhu area of the Qaidam Basin, China[J]. Energies, 2022, 15(13): 4593. doi: 10.3390/en15134593
    [32]
    郭泽清, 刘卫红, 冯刚. 柴达木盆地三湖地区岩性气藏分布规律和有利区块预测[J]. 天然气地球科学, 2011, 22(4): 635-641. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201104011.htm

    GUO Z Q, LIU W H, FENG G. Distribution regularities and favorable exploration areas of lithologic gas reservoir in Sanhu area, Qaidam Basin[J]. Natural Gas Geoscience, 2011, 22(4): 635-641. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201104011.htm
    [33]
    孙平, 郭泽清, 张林, 等. 柴达木盆地三湖地区生物气成藏机理与勘探对策[J]. 天然气地球科学, 2013, 24(3): 494-504. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303008.htm

    SUN P, GUO Z Q, ZHANG L, et al. Biologic gas accumulation mechanism and exploration strategy in Sanhu area, Qaidam Basin[J]. Natural Gas Geoscience, 2013, 24(3): 494-504. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201303008.htm
    [34]
    单俊峰, 鞠俊成, 张文伟, 等. 柴达木盆地三湖坳陷盐壳遮挡型生物气成藏模式[J]. 天然气工业, 2019, 39(8): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908003.htm

    SHAN J F, JU J C, ZHANG W W, et al. Hydrocarbon accumulation patterns of salt crust covered biogenic gas reservoirs in the Sanhu Depression, Qaidam Basin[J]. Natural Gas Industry, 2019, 39(8): 25-32. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908003.htm
    [35]
    王万春, 刘文汇, 王国仓, 等. 沉积有机质微生物降解与生物气源岩识别: 以柴达木盆地三湖坳陷第四系为例[J]. 石油学报, 2016, 37(3): 318-327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201603004.htm

    WANG W C, LIU W H, WANG G C, et al. Biodegradation of depositional organic matter and identification of biogenic gas source rocks: An example from the Sanhu Depression of Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(3): 318-327. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201603004.htm
    [36]
    司马立强, 马骏, 刘俊丰, 等. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202302001.htm

    SIMA L Q, MA J, LIU J F, et al. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(2): 1-10. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202302001.htm
    [37]
    STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572
    [38]
    KIDA M, KOJIMA T, TANABE Y, et al. Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams[J]. Water Research, 2019, 163: 114901. doi: 10.1016/j.watres.2019.114901
    [39]
    CABRERA J M, GARCIA P E, PEDROZO F L, et al. Dynamics of the dissolved organic matter in a stream-lake system within an extremely acid to neutral pH range: Agrio-Caviahue watershed[J]. Spectrochimica Acta Part A (Molecular and Biomolecular Spectroscopy), 2020, 235: 118278. doi: 10.1016/j.saa.2020.118278
    [40]
    JORGENSEN L, STEDMON C A, KRAGH T, et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter[J]. Marine Chemistry, 2011, 126(1/4): 139-148.
    [41]
    PITTA E, ZERI C. The impact of combining data sets of fluorescence excitation -emission matrices of dissolved organic matter from various aquatic sources on the information retrieved by PARAFAC modeling[J]. Spectrochimica Acta Part A (Molecular and Biomolecular Spectroscopy), 2021, 258: 119800. doi: 10.1016/j.saa.2021.119800
    [42]
    HONG H, WU S, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Science of the Total Environment, 2021, 790: 147855. doi: 10.1016/j.scitotenv.2021.147855
    [43]
    AMARAL V, ROMERA-CASTILLO C, FORJA J. Dissolved organic matter in the Gulf of Cádiz: Distribution and drivers of chromophoric and fluorescent properties[J]. Frontiers in Marine Science, 2020, 7: 126. doi: 10.3389/fmars.2020.00126
    [44]
    CATALÁN N, CASAS-RUIZ J P, ARCE M I, et al. Behind the scenes: Mechanisms regulating climatic patterns of dissolved organic carbon uptake in headwater streams[J]. Global Biogeochemical Cycles, 2018, 32(10): 1528-1541. doi: 10.1029/2018GB005919
    [45]
    KIM J, KIM Y, KANG H W, et al. Tracing water mass fractions in the deep western Indian Ocean using fluorescent dissolved organic matter[J]. Marine Chemistry, 2020, 218: 103720. doi: 10.1016/j.marchem.2019.103720
    [46]
    GAO Z, GUÉGUEN C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin[J]. Deep Sea Research Part Ⅰ (Oceanographic Research Papers), 2017, 121: 30-37. doi: 10.1016/j.dsr.2016.12.014
    [47]
    YAMASHITA Y, KOJIMA D, YOSHIDA N, et al. Relationships between dissolved black carbon and dissolved organic matter in streams[J]. Chemosphere, 2021, 271: 129824. doi: 10.1016/j.chemosphere.2021.129824
    [48]
    GULLIAN-KLANIAN M, GOLD-BOUCHOT G, DELGADILLO-DÍAZ M, et al. Effect of the use of Bacillus spp. on the characteristics of dissolved fluorescent organic matter and the phytochemical quality of Stevia rebaudiana grown in a recirculating aquaponic system[J]. Environmental Science and Pollution Research, 2021, 28(27): 36326-36343. doi: 10.1007/s11356-021-13148-6
    [49]
    SONDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability[J]. Ophelia, 2003, 57(3): 161-176. doi: 10.1080/00785236.2003.10409512
    [50]
    CHAI L, HUANG M, FAN H, et al. Urbanization altered regional soil organic matter quantity and quality: Insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC)[J]. Chemosphere, 2019, 220: 249-258. doi: 10.1016/j.chemosphere.2018.12.132
    [51]
    冯伟莹, 朱元荣, 吴丰昌, 等. 太湖水体溶解性有机质荧光特征及其来源解析[J]. 环境科学学报, 2016, 36(2): 475-482. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201602014.htm

    FENG W Y, ZHU Y R, WU F C, et al. The fluorescent characteristics and sources of dissolved organic matter in water of Tai Lake, China[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 475-482. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201602014.htm
    [52]
    吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008, 20(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200801003.htm

    WU F C, WANG L Y, LI W, et al. Natural organic matter and its significance in terrestrial surface environment[J]. Journal of Lake Sciences, 2008, 20(1): 1-12. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200801003.htm
    [53]
    HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
    [54]
    ALBRECHT R, JOFFRE R, GROS R, et al. Efficiency of near-infrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process[J]. Bioresource Technology, 2008, 99(2): 448-455. doi: 10.1016/j.biortech.2006.12.019
    [55]
    HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter(DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465-1473. doi: 10.1016/j.watres.2006.01.048
    [56]
    BRICAUD A, MOREL A, PRIEUR L. Absorption by dissolved organic matter of the sea(yellow substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1): 43-53. doi: 10.4319/lo.1981.26.1.0043
    [57]
    赵同谦, 李鹏, 邰超, 等. 煤生物成气过程中溶解性有机物的光谱特征研究[J]. 煤炭学报, 2017, 42(增刊2): 525-534. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2031.htm

    ZHAO T Q, LI P, TAI C, et al. Spectral characteristics of dissolved organic matter in the process of coal gasification by microorganism[J]. Journal of China Coal Society, 2017, 42(S2): 525-534. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2031.htm
    [58]
    邹友平, 吕闰生, 杨建. 云盖山矿井水中溶解有机质三维荧光光谱特征分析[J]. 煤炭学报, 2012, 37(8): 1396-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201208026.htm

    ZOU Y P, LYU R S, YANG J. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in coal mine water[J]. Journal of China Coal Society, 2012, 37(8): 1396-1400. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201208026.htm
    [59]
    LI Y, FU H, YAN D, et al. Effects of simulated surface freshwater environment on in situ microorganisms and their methanogenesis after tectonic uplift of a deep coal seam[J]. International Journal of Coal Geology, 2022, 257: 104014. doi: 10.1016/j.coal.2022.104014
    [60]
    BORTON M A, HOYT D W, ROUX S, et al. Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales[J]. Proceedings of the National Academy of Sciences, 2018, 115(28): 6585-6594.
    [61]
    COLOSIMO F, THOMAS R, LLOYD J R, et al. Biogenic methane in shale gas and coal bed methane: A review of current knowledge and gaps[J]. International Journal of Coal Geology, 2016, 165: 106-120. doi: 10.1016/j.coal.2016.08.011
    [62]
    LI X, DAI X, TAKAHASHI J, et al. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J]. Bioresource Technology, 2014, 159: 412-420. doi: 10.1016/j.biortech.2014.02.085
    [63]
    MESLÉM, PÉRIOT C, DROMART G, et al. Biostimulation to identify microbial communities involved in methane generation in shallow, kerogen-rich shales[J]. Journal of Applied Microbiology, 2013, 114(1): 55-70. doi: 10.1111/jam.12015
    [64]
    HE H, HAN Y X, JIN D C, et al. Microbial consortium in a non-production biogas coal mine of eastern China and its methane generation from lignite[J]. Energy Sources, Part A (Recovery, Utilization, and Environmental Effects), 2016, 38(10): 1377-1384. doi: 10.1080/15567036.2014.927541
    [65]
    何小松, 张慧, 黄彩红, 等. 地下水中溶解性有机物的垂直分布特征及成因[J]. 环境科学, 2016, 37(10): 3813-3820. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201610019.htm

    HE X S, ZHANG H, HUANG C H, et al. Vertical distribution characteristics of dissolved organic matter in groundwater and its cause[J]. Environmental Science, 2016, 37(10): 3813-3820. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201610019.htm
    [66]
    梅建森, 康毅力, 张永高, 等. 柴达木盆地生物气源岩评价及勘探方向[J]. 天然气工业, 2007, 27(9): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200709010.htm

    MEI J S, KANG Y L, ZHANG Y G, et al. Biogas source rock evaluation in the Qaidam Basin and its exploration target[J]. Natural Gas Industry, 2007, 27(9): 17-20. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200709010.htm
    [67]
    管志强, 徐子远, 周瑞年, 等. 柴达木盆地第四系生物气的成藏条件及控制因素[J]. 天然气工业, 2001, 21(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200106000.htm

    GUAN Z Q, XU Z Y, ZHOU R N, et al. The essential conditions and controlling factors of formation of Quaternary biogenic gas reservoirs[J]. Natural Gas Industry, 2001, 21(6): 1-5. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200106000.htm
    [68]
    程付启, 金强, 林会喜, 等. 柴达木盆地三湖地区储盖组合有效性对生物气富集的控制作用[J]. 地质科学, 2008, 43(2): 333-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200802013.htm

    CHENG F Q, JIN Q, LIN H X, et al. Controlling effect of reservoir-cap combination quality on richment grade of biogas in Sanhu area of the Qaidam Basin[J]. Chinese Journal of Geology, 2008, 43(2): 333-346. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200802013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(154) PDF Downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return