Citation: | ZHANG Ligang, HU Zhinan, FAN Sen, LUO Xiaolei, DING Hejia, MA Yuanyuan, LI Qinglong, SONG Yongyang. Optimization of pattern of well in hot dry rock fractured reservoirs through numerical simulation[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 1-11. doi: 10.19509/j.cnki.dzkq.tb20230661 |
An enhanced geothermal system (EGS) is a crucial means of extracting thermal energy from hot dry rock reservoirs, and the pattern of well plays a key role in influencing heat extraction efficiency. Currently, there is limited research on pattern of well considering fractured reservoir exploitation models.
This paper establishes a numerical model for heat extraction from hot dry rock fractured reservoirs and analyses the impact of four different patterns of wells on EGS heat extraction performance through a comparative analysis of the temperature decrease of the bedrock, heat extraction rate, production temperature, and heat extraction power.
The results indicate that, compared to vertical wells, horizontal wells have a larger area for fluid heat exchange, allowing for more efficient heat development between fractures. After 30 years of production, considering the case of hydraulic fracturing fracture connectivity, the one injection and two production schemes of horizontal wells exhibit the highest heat extraction efficiency. In the vertical well direction, the temperature influence range is approximately 690 m, with an average temperature decrease of 38.09 K in the bedrock, a heat extraction rate of 24.42%, and a heat extraction power of 3.5 MW.
The research results provide a theoretical reference for enhancing the heat production of geothermal systems and achieving efficient and sustainable development of hot dry rock resources.
[1] |
魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS202201001.htm
WEI Z B, MA X R, GUO Y, et al. Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric Power Construction, 2022, 43(1): 1-9. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJS202201001.htm
|
[2] |
BROWN D W, DUCHANE D V, HEIKEN G, et al. Mining the earth's heat: Hot dry rock geothermal energy[M]. Berlin, Heidelberg: Springer, 2012.
|
[3] |
冯波, 柯尊嵩, 刘彦广, 等. 增强型地热系统储层堵塞机理及解堵技术进展[J]. 天然气工业, 2022, 42(12): 165-183. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202212017.htm
FENG B, KE Z S, LIU Y G, et al. Plugging mechanism and plugging removal technologies for enhanced geothermal system reservoirs[J]. Natural Gas Industry, 2022, 42(12): 165-183. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202212017.htm
|
[4] |
付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201804022.htm
FU Y R, LI M L, WANG S Y, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526-540. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201804022.htm
|
[5] |
孙明行, 张起钻, 刘德民, 等. 广西干热型地热资源成因机制与赋存模式[J]. 地质科技通报, 2022, 41(3): 330-340. doi: 10.19509/j.cnki.dzkq.2022.0037
SUN M H, ZHANG Q Z, LIU D M, et al. Genesis and occurrence models of hot-dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 330-340. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0037
|
[6] |
刘松泽, 魏建光, 马媛媛, 等. 超临界二氧化碳在地热开发中的应用研究进展[J]. 应用化工, 2020, 49(6): 1537-1540. doi: 10.3969/j.issn.1671-3206.2020.06.046
LIU S Z, WEI J G, MA Y Y, et al. Research progress on application of supercritical carbon dioxide in geothermal exploitation[J]. Applied Chemical Industry, 2020, 49(6): 1537-1540. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-3206.2020.06.046
|
[7] |
秦浩, 汪道兵, 邓雅军, 等. 干热岩人工裂隙内暂堵剂运移规律研究[J]. 工程热物理学报, 2022, 43(9): 2397-2403. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202209015.htm
QIN H, WANG D B, DENG Y J, et al. Study on transport law of temporary plugging agent in artificial fractures of hot dry rocks[J]. Journal of Engineering Thermophysics, 2022, 43(9): 2397-2403. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202209015.htm
|
[8] |
GIARDINI D. Geothermal quake risks must be faced[J]. Nature, 2009, 462: 848-849. doi: 10.1038/462848a
|
[9] |
LEI Z H, ZHANG Y J, ZHANG S Q, et al. Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios[J]. Renewable Energy, 2020, 145: 65-83. doi: 10.1016/j.renene.2019.06.024
|
[10] |
ASAI P, PANJA P, MCLENNAN J, et al. Effect of different flow schemes on heat recovery from enhanced geothermal systems (EGS)[J]. Energy, 2019, 175: 667-676. doi: 10.1016/j.energy.2019.03.124
|
[11] |
单丹丹, 李玮, 闫铁, 等. 增强型地热系统采热性能评价: 以共和盆地恰卜恰地区干热岩储层为例[J]. 天然气工业, 2022, 42(10): 150-160. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202210015.htm
SHAN D D, LI W, YAN T, et al. Evaluation on heat extraction performance of enhanced geothermal system: A case study of hot-dry rock reservoirs in the Qiabuqia area of the Gonghe Basin[J]. Natural Gas Industry, 2022, 42(10): 150-160. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202210015.htm
|
[12] |
HOFMANN H, BABADAGLI T, YOON J S, et al. A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements[J]. Geothermics, 2016, 64: 362-381. doi: 10.1016/j.geothermics.2016.06.016
|
[13] |
唐宜家, 马天寿, 陈力力, 等. 基于二维裂缝网络数值模拟的干热岩储层热采效率评价[J]. 天然气工业, 2022, 42(4): 94-106. doi: 10.3787/j.issn.1000-0976.2022.04.009
TANG Y J, MA T S, CHEN L L, et al. Evaluation on the heat extraction efficiency of hot dry rock reservoirs based on two-dimensional fracture network numerical simulation[J]. Natural Gas Industry, 2022, 42(4): 94-106. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2022.04.009
|
[14] |
何淼, 徐宁宁, 许明标, 等. U型井开发干热岩井筒温度场研究[J]. 热科学与技术, 2023, 22(3): 242-249. https://www.cnki.com.cn/Article/CJFDTOTAL-RKXS202303003.htm
HE M, XU N N, XU M B, et al. Study of temperature field of U-shaped well for developing dry hot rock[J]. Journal of Thermal Science and Technology, 2023, 22(3): 242-249. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RKXS202303003.htm
|
[15] |
ZHENG J, LI P, DOU B, et al. Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect[J]. Energy, 2022, 255: 124496. doi: 10.1016/j.energy.2022.124496
|
[16] |
宋国锋, 李根生, 宋先知, 等. 基于多目标的干热岩注采取热性能均衡优化方法[J]. 天然气工业, 2022, 42(4): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204007.htm
SONG G F, LI G S, SONG X Z, et al. Multi-objective based balanced optimization method of heat extraction performance of hot dry rock[J]. Natural Gas Industry, 2022, 42(4): 73-84. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202204007.htm
|
[17] |
冯波, 刘鑫, 张国斌, 等. 单井闭循环地热系统可持续开发潜力数值模拟[J]. 天然气工业, 2020, 40(9): 146-155. doi: 10.3787/j.issn.1000-0976.2020.09.018
FENG B, LIU X, ZHANG G B, et al. Numerical simulation on the sustainable development potential of a single-well closed-cycle geothermal system[J]. Natural Gas Industry, 2020, 40(9): 146-155. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2020.09.018
|
[18] |
罗良, 曹文炅, 蒋方明. 增强型地热系统采热的分形分叉网络模型[J]. 工程热物理学报, 2015, 36(2): 388-392. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201502035.htm
LUO L, CAO W J, JIANG F M. Fractal branch network model of heat extraction in EGS[J]. Journal of Engineering Thermophysics, 2015, 36(2): 388-392. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201502035.htm
|
[19] |
王天宇, 周小夏, 李根生, 等. 基于热-流-固耦合的多分支径向井地热开发模型及其取热效果分析[J]. 天然气工业, 2023, 43(3): 133-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202303012.htm
WANG T Y, ZHOU X X, LI G S, et al. Geothermal development model of multilateral radial well and its heat extraction effect analysis based on thermal-hydraulic-mechanical coupling[J]. Natural Gas Industry, 2023, 43(3): 133-144. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202303012.htm
|
[20] |
LI S B, FENG X T, ZHANG D X, et al. Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs[J]. Applied Energy, 2019, 247: 40-59. doi: 10.1016/j.apenergy.2019.04.036
|
[21] |
XIE J X, WANG J S, LIU X L. Performance analysis of pinnate horizontal well in enhanced geothermal system[J]. Applied Thermal Engineering, 2022, 201: 117799. doi: 10.1016/j.applthermaleng.2021.117799
|
[22] |
杨艳林, 靖晶, 王福刚, 等. CO2增强地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, 35(7): 1130-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201407005.htm
YANG Y L, JING J, WANG F G, et al. Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta Energiae Solaris Sinica, 2014, 35(7): 1130-1137. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201407005.htm
|
[23] |
ZHANG W, QU Z Q, GUO T K, et al. Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress[J]. Renewable Energy, 2019, 143: 855-871.
|
[24] |
HU X C, BANKS J, GUO Y T, et al. Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production: A numerical investigation[J]. Renewable Energy, 2021, 176: 115-134.
|
[25] |
丁河嘉. 干热岩压裂储层连续性和周期性采热影响规律研究[D]. 黑龙江大庆: 东北石油大学, 2024.
DING H J. Study on the mechanism of continuous and periodic thermal recovery of hot dry rock fractured reservoir[D]. Daqing Heilongjiang: Northeast Petroleum University, 2024. (in Chinese with English abstract)
|
[26] |
巩亮, 韩东旭, 陈峥, 等. 增强型地热系统关键技术研究现状及发展趋势[J]. 天然气工业, 2022, 42(7): 135-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207016.htm
GONG L, HAN D X, CHEN Z, et al. Research status and development trend of key technologies for an enhanced geothermal system[J]. Natural Gas Industry, 2022, 42(7): 135-159. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207016.htm
|
[27] |
张炜韬, 韩东旭, 李敬法, 等. 增强型地热储层多场耦合数值模拟研究进展[J]. 东北电力大学学报, 2022, 42(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL202203001.htm
ZHANG W T, HAN D X, LI J F, et al. Multi-field coupling numerical simulation of enhanced geothermal reservoirs: A review[J]. Journal of Northeast Electric Power University, 2022, 42(3): 1-14. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDL202203001.htm
|
[28] |
RYBACH L. "The future of geothermal energy" and its challenges[C]//Anon. Proceedings World Geothermal Congress. Bali, Indonesia: [s. n.], 2010: 25-29.
|
[29] |
吴祖松, 王元清, 黄锋, 等. 裂隙岩体开挖渗流原理及工程应用[M]. 北京: 北京理工大学出版社, 2020.
WU Z S, WANG Y Q, HUANG F, et al. Seepage principle and engineering application in excavation of fractured rock mass[M]. Beijing: Beijing Insititute of Technology Press, 2020. (in Chinese)
|
[30] |
SONG X Z, SHI Y, LI G S, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325-337.
|
[31] |
张杰, 谢经轩. 多分支井增强型地热开发系统设计及产能评价[J]. 天然气工业, 2021, 41(3): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103027.htm
ZHANG J, XIE J X. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry, 2021, 41(3): 179-188. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103027.htm
|
[32] |
郭建春, 任冀川, 王世彬, 等. 裂缝性致密碳酸盐岩储层酸压多场耦合数值模拟与应用[J]. 石油学报, 2020, 41(10): 1219-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202010007.htm
GUO J C, REN J C, WANG S B, et al. Numerical simulation and application of multi-field coupling of acid fracturing in fractured tight carbonate reservoirs[J]. Acta Petrolei Sinica, 2020, 41(10): 1219-1228. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202010007.htm
|
[33] |
刘恒伟, 肖鹏, 窦斌, 等. 储层特征对水平井多裂隙增强型地热系统采热过程影响的数值模拟研究[J]. 地质科技通报, 2022, 41(3): 341-348. doi: 10.19509/j.cnki.dzkq.2022.0081
LIU H W, XIAO P, DOU B, et al. Numerical simulation of influence of reservoir characteristics on heating process of enhanced geothermal system of horizontal well multi fractures[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 341-348. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0081
|
[34] |
LIANG B, JIANG H Q, LI J J, et al. A systematic study of fracture parameters effect on fracture network permeability based on discrete-fracture model employing finite element analyses[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 711-722.
|
[35] |
TENMA N, YAMAGUCHI T, ZYVOLOSKI G. The Hijiori Hot Dry Rock test site, Japan: Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics, 2008, 37(1): 19-52.
|
[36] |
ZHANG L, LI X, ZHANG Y, et al. CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs[J]. Energy, 2017, 123: 139-148.
|
[37] |
ZENG Y C, SU Z, WU N Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field[J]. Energy, 2013, 56: 92-107.
|