Citation: | LI Man, ZHANG Wei, LIAO Yuzhong, LIU Feng, WEI Shuaichao, HE Yujiang. Characteristics and mechanisms of fluorine enrichment in the geothermal water of south central Shandong Province[J]. Bulletin of Geological Science and Technology, 2024, 43(3): 36-47. doi: 10.19509/j.cnki.dzkq.tb20230706 |
Yishu fault zone geothermal field and central Shandong uplift geothermal field are typical geothermal fields in south central Shandong Province. In order to investigated the distribution characteristics and mechanisms of fluorine enrichment in the geothermal water of the this area,
hydrochemical diagrams, geochemical simulations and principal component analysis were employed.
The results show that the geothermal water in the study area is mainly Na-Ca-Cl-, Na-Ca-SO4-Cl- and Na-Cl-SO4-type water, dominated by weakly alkaline water. The predominant cation is the sodium ion, with fluorine concentration between 0.38 and 4.5 mg/L. Sodium-rich and weakly alkaline environments are faciliated to the enrichment of fluorine in the geothermal water. The fluorine concentration has significant positive correlations with the Na+, Cl- and TDS concentrations in the geothermal water. In addition, it has significant positive correlations with K+ and SO42- concentrations and significant negative correlations with Mg2+ and HCO3- concentrations in the geothermal water in the Yishu fault zone. The cation exchange effect in the geothermal water of the central Shandong uplift zone is stronger than that in the Yishu fault zone, and the reaction strength of Na+ is significantly stronger than that of Mg2+. The geothermal field of the central Shandong uplift and Yishu fault zones are both fracturing types. The thermal storage lithologies are limestone, limestone in the thermal alteration zone and ansanite in the broken belt, with strong water-rock interactions. The provenance of fluorine in the geothermal water is the dissolution reprecipitation of fluorine-containing minerals, and the fluorine concentration in the geothermal water is further increased by cation exchange and other water-rock interactions. High temperature and sodium-rich have a great influence on fluorine enrichment.
This research provides a reference for the exploitation and utilization of geothermal resources.
[1] |
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002
WANG G L, LIN W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923-1937. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2020.07.002
|
[2] |
牟林凯. 山东省地热水赋存特征及其形成模式研究[D]. 山东青岛: 山东科技大学, 2017.
MOU L K. Study of occurrence characteristics and formation model of geothermal water in Shandong Province[D]. Qingdao Shandong: Shandong University of Science and Technology, 2017. (in Chinese with English abstract)
|
[3] |
朱喜, 张庆莲, 刘彦广. 基于热储法的鲁西平原地热资源评价[J]. 地质科技情报, 2016, 35(4): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm
ZHU X, ZHANG Q L, LIU Y G. Evaluation of the geothermal resources in the plain of West Shandong Province[J]. Geological Science and Technology Information, 2016, 35(4): 172-177. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604027.htm
|
[4] |
孟甲, 秦鹏, 史启朋, 等. 断陷盆地碳酸盐岩热储勘查及研究: 以鱼台凹陷为例[J]. 地质科技通报, 2022, 41(4): 38-45. doi: 10.19509/j.cnki.dzkq.2022.0035
MENG J, QIN P, SHI Q P, et al. Exploration and study on carbonate thermal reservoirs in fault basins: A case from Yutai Sag[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 38-45. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0035
|
[5] |
蔡有兄, 钟秀燕. 山东省鲁中南地区典型地热田概述[J]. 山东国土资源, 2015, 31(5): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201505010.htm
CAI Y X, ZHONG X Y. Brief introduction to typical geothermal field in south region of Shandong Province[J]. Shandong Land and Resources, 2015, 31(5): 24-30. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201505010.htm
|
[6] |
张林, 孙咏梅, 林春竹, 等. 地热水的开发利用与环境氟污染[J]. 农业环境与发展, 1996, 13(3): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ603.012.htm
ZHANG L, SUN Y M, LIN C Z, et al. Development and utilization of geothermal water and environmental fluorine pollution[J]. Journal of Agricultural Resources and Environment, 1996, 13(3): 40-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ603.012.htm
|
[7] |
GUO Q H, WANG Y X, LIU W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2007, 166(3/4): 255-268.
|
[8] |
魏晓阳, 郭清海, 袁建飞, 等. 高温地热流体来源氟在环境中的分布特征: 以西藏羊八井热田为例[J]. 东华理工大学学报(自然科学版), 2009, 32(1): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200901009.htm
WEI X Y, GUO Q H, YUAN J F, et al. Environmental migration and transformation of fluoride from high-temperature geothermal fluid: A case study at Yangbajing, Tibet, China[J]. Journal of East China Institute of Technology (Natural Science), 2009, 32(1): 38-44. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200901009.htm
|
[9] |
石维栋, 郭建强, 张森琦, 等. 贵德盆地高氟、高砷地下热水分布及水化学特征[J]. 水文地质工程地质, 2010, 37(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201002013.htm
SHI W D, GUO J Q, ZHANG S Q, et al. The distribution and geochemistry of geothermal groundwater bearing F and As in the Guide Basin[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 36-41. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201002013.htm
|
[10] |
李曼, 邢林啸, 王贵玲, 等. 冀中坳陷地区地下热水氟分布特征及其风险评估和开发利用建议[J]. 中国地质, 2023, 50(6): 1857-1870. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202306019.htm
LI M, XING L X, WANG G L, et al. Distribution characteristics of fluorine in deep geothermal water in Jizhong Depression and its risk assessment and development utilization suggestions[J]. Geology in China, 2023, 50(6): 1857-1870. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202306019.htm
|
[11] |
宋晓光, 芦岩, 梁仕凯, 等. 张家口坝下地区高氟地下水成因分析与健康风险评价[J]. 地质科技通报, 2022, 41(1): 240-250. doi: 10.19509/j.cnki.dzkq.2021.0070
SONG X G, LU Y, LIANG S K, et al. Analysis of high-fluoride groundwater formation mechanisms and assessment of health risk in Baxia region, Zhangjiakou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 240-250. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0070
|
[12] |
潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312
PAN H Y, ZOU C J, BI J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0312
|
[13] |
SHUPE J L, OLSON A E, PETERSON H B, et al. Fluoride toxicosis in wild ungulates[J]. Journal of the American Veterinary Medical Association, 1984, 185(11): 1295-1300.
|
[14] |
毛健全, 王伍军. 贵州温泉水氟研究[J]. 贵州工学院学报, 1991, 20(2): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199102004.htm
MAO J Q, WANG W J. Study of the fluorine in hot spring in Guizhou[J]. Journal of Guizhou Institute of Technology, 1991, 20(2): 13-21. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GZGX199102004.htm
|
[15] |
LOTTERMOSER B G, CLEVERLEY J S. Controls on the genesis of a high-fluoride thermal spring: Innot Hot Springs, North Queensland[J]. Australian Journal of Earth Sciences, 2007, 54(4): 597-607.
|
[16] |
SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148: 96-104.
|
[17] |
孙红丽, 马峰, 刘昭, 等. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学, 2015, 35(1): 251-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201501045.htm
SUN H L, MA F, LIU Z, et al. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science, 2015, 35(1): 251-259. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201501045.htm
|
[18] |
原若溪, 王贵玲, 刘峰, 等. 冀东北地区中低温对流型地热系统的氟指示意义研究[J]. 地质论评, 2021, 67(1): 218-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101022.htm
YUAN R X, WANG G L, LIU F, et al. Study on the indication of fluorine of the low-medium temperature convective geothermal system in northeastern Hebei Province[J]. Geological Review, 2021, 67(1): 218-230. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101022.htm
|
[19] |
欧浩, 卢国平, 胡晓农, 等. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201905021.htm
OU H, LU G P, HU X N, et al. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region, Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201905021.htm
|
[20] |
于晓静, 金兴, 尹斐. 济南市平阴氡地热水中氟的来源及赋存机理浅析[J]. 山东国土资源, 2017, 33(8): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201708008.htm
YU X J, JIN X, YIN F. Primary analysis on the resource and occurrence mechanism of fluorine ion in radon geothermal water in Pingyin of Jinan City[J]. Shandong Land and Resources, 2017, 33(8): 46-50. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201708008.htm
|
[21] |
虞岚. 我国部分地下热水中氟的分布与成因探讨[D]. 北京: 中国地质大学(北京), 2007.
YU L. A study of the occurrence and origin of fluoride in thermal groundwater in some areas of China[D]. Beijing: China University of Geosciences (Beijing), 2007. (in Chinese with English abstract)
|
[22] |
刘春华, 王威, 杨丽芝, 等. 山东省地下水氟富集规律及其驱动机制[J]. 地质学报, 2021, 95(6): 1962-1972. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106020.htm
LIU C H, WANG W, YANG L Z, et al. Driving mechanisms of fluorine ennrichment characteristics in groundwater, Shandong Province[J]. Acta Geologica Sinica, 2021, 95(6): 1962-1972. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106020.htm
|
[23] |
刘帅, 马雪梅, 刘志涛, 等. 鲁北平原高氟深层地下水的探究[J]. 山东国土资源, 2017, 33(6): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201706006.htm
LIU S, MA X M, LIU Z T, et al. Study on deep groundwater with high-flouride in Lubei Plain[J]. Shandong Land and Resources, 2017, 33(6): 30-37. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201706006.htm
|
[24] |
郝启勇, 徐晓天, 张心彬, 等. 鲁西北阳谷地区浅层高氟地下水化学特征及成因[J]. 地球科学与环境学报, 2020, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
HAO Q Y, XU X T, ZHANG X B, et al. Hydrochemical characteristics and genesis of high-fluorine shallow groundwater in Yanggu area of the northwestern Shandong, China[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 668-677. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
|
[25] |
厉愿. 山东省地热资源热成因机制分析[D]. 山东青岛: 山东科技大学, 2012.
LI Y. Analysis of thermal genetic mechanism of geothermal resources in Shandong Province[D]. Qingdao Shandong: Shandong University of Science and Technology, 2012. (in Chinese with English abstract)
|
[26] |
朱其顺, 许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理, 2009, 34(1): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200901013.htm
ZHU Q S, XU G Q. The current situation and research progress of ground water fluorine pollution, in China[J]. Environmental Science and Management, 2009, 34(1): 42-44. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200901013.htm
|
[27] |
张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系: 以河南省永城矿区为例[J]. 地质与资源, 2004, 13(2): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200402007.htm
ZHANG W, FU X F, ZHANG F R. The relationship between the high fluorine content of groundwater and the pH value, water temperature and the ratio of (Na++K+)/Ca2+: A case study of Yongcheng mine area[J]. Journal of Precious Metallic Geology, 2004, 13(2): 109-111. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200402007.htm
|
[28] |
陈国阶, 余大富. 环境中的氟[M]. 北京: 北京科技出版社, 1990.
CHEN G J, YU D F. Fluorine in the environment[M]. Beijing: Beijing Science and Technology Press, 1990. (in Chinese)
|
[29] |
鲁孟胜, 韩宝平, 武凡, 等. 鲁西南地区高氟地下水特征及成因探讨[J]. 中国地质, 2014, 41(1): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201401025.htm
LU M S, HAN B P, WU F, et al. Characteristics and genesis of high-fluorine groundwater in southwestern Shandong Province[J]. Geology in China, 2014, 41(1): 294-302. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201401025.htm
|
[30] |
GAO Z J, ZHU Z H, LIU X D, et al. The formation and model of high fluoride groundwater and in-situ dispelling fluoride assumption in Gaomi City of Shandong Province[J]. Journal of Groundwater Science and Engineering, 2014, 2(2): 34-39.
|
[31] |
HANDA B K. Geochemistry and genesis of fluoride-containing ground waters in India[J]. Ground Water, 1975, 13(3): 275-281.
|
[32] |
乌丽罕. 衡水地区高氟地下水化学特征及其成因[D]. 北京: 中国地质大学(北京), 2015.
WU L H. Characteristics and genesis of high-fluoride groundwater in Hengshui City, the North China Plain[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese with English abstract)
|
[33] |
姜凌. 干旱区绿洲地下水水化学成分形成及演化机制研究: 以阿拉善腰坝绿洲为例[D]. 西安: 长安大学, 2009.
JIANG L. Study on hydrochemical composition formation and evolution mechanisms of the groundwater in oasis of arid areas: A case of Yaoba oasis in Alashan[D]. Xi'an: Chang'an University, 2009. (in Chinese with English abstract)
|
[34] |
孟祥玲, 王庆兵, 杨培杰. 山东省地热资源开发利用现状调查与问题分析[J]. 山东国土资源, 2021, 37(11): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202111006.htm
MENG X L, WANG Q B, YANG P J. Investigation and problem analysis on development and utilization of geothermal resources in Shandong Province[J]. Shandong Land and Resources, 2021, 37(11): 36-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202111006.htm
|
[35] |
李肖兰, 杜炤伟, 张玲, 等. 山东省地热资源分布与开发利用研究[J]. 山东国土资源, 2021, 37(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm
LI X L, DU Z W, ZHANG L, et al. Distribution characteristics and present condition of exploitation and utilization of geothermal resources in Shandong Province[J]. Shandong Land and Resources, 2021, 37(1): 37-43. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202101005.htm
|
[36] |
中华人民共和国卫生部, 国家标准化管理委员会. 生活饮用水卫生标准: GB5749-2006[S]. 北京: 中国标准出版社, 2007.
Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. Standards for drinking water quality: GB5749-2006[S]. Beijing: Standards Press of China, 2007. (in Chinese)
|
[37] |
生态环境部, 国家市场监督管理总局. 农田灌溉水质标准: GB5084-2021[S]. 北京: 中国标准出版社, 2021.
Ministry of Ecology and Environment, State Administration for Market Regulation. Standard of water quality for farmland irrigation: GB5084-2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
|
[38] |
国家环境保护局. 渔业用水标准: GB5084-89[S]. 北京: 中国标准出版社, 1989.
State Department of Environmental Conservation. Water quality standard for fisheries: GB5084-89[S]. Beijing: Standards Press of China, 1989. (in Chinese)
|
[39] |
国家市场监督管理总局, 国家标准化管理委员会. 温泉服务温泉水质要求: GB/T41837-2022[S]. 北京: 中国标准出版社, 2022.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Hot spring service: Hot spring water quality requirement: GB/T41837-2022[S]. Beijing: Standards Press of China, 2022. (in Chinese)
|
[40] |
余正艳, 郭清海, 曹耀武, 等. 阴离子黏土处理增强型地热系统返排液的研究[J]. 环境化学, 2018, 37(2): 335-346. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201802018.htm
YU Z Y, GUO Q H, CAO Y W, et al. Treat of the fracturing fluid from enhanced geothermal systems by using selected anion clays[J]. Environmental Chemistry, 2018, 37(2): 335-346. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201802018.htm
|
[41] |
郑桂森, 李良景, 吕金波. 北京地热开采中的尾水氟处理方法[J]. 地质通报, 2019, 38(增刊1): 397-403. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2019Z1020.htm
ZHENG G S, LI L J, LÜ J B. Research on method of processing tail water in geothermal exploration in Beijing[J]. Geological Bulletin of China, 2019, 38(S1): 397-403. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2019Z1020.htm
|
[42] |
王睿智, 刘建, 吴金辉, 等. 磁性纳米复合物的制备及其在地热水中F和As的去除性能研究[J]. 新型工业化, 2019, 9(6): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201906018.htm
WANG R Z, LIU J, WU J H, et al. Preparation of magnetic nanocomposite and their removal properties of F and As in geothermal water[J]. Journal of New Industrialization, 2019, 9(6): 82-85. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201906018.htm
|
[43] |
于波, 任桐, 都兴红, 等. 含氟废水处理工艺研究[J]. 中国资源综合利用, 2020, 38(11): 192-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202011056.htm
YU B, REN T, DU X H, et al. Study on the treatment process of fluorine-containing wastewater[J]. China Resources Comprehensive Utilization, 2020, 38(11): 192-195. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202011056.htm
|