Citation: | Liu Yanfeng, Zhang Wenbiao, Duan Taizhong, Lian Peiqing, Li Meng, Zhao Huawei. Progress of deep learning in oil and gas reservoir geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241. doi: 10.19509/j.cnki.dzkq.2021.0417 |
[1] |
吴胜和, 李宇鹏. 储层地质建模的现状与展望[J]. 海相油气地质, 2007, 12(3): 53-60. doi: 10.3969/j.issn.1672-9854.2007.03.009
Wu S H, Li Y P. Reservoir modeling: Current situation and development prospect[J]. Marine Origin Petroleum Geology, 2007, 12(3): 53-60(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2007.03.009
|
[2] |
张文彪, 段太忠, 刘彦锋, 等. 定量地质建模技术应用现状与发展趋势[J]. 地质科技情报, 2019, 38(3): 270-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
Zhang W B, Duan T Z, Liu Y F, et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019, 38(3): 270-281(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903029.htm
|
[3] |
尹艳树, 张昌民, 李玖勇, 等. 多点地质统计学研究进展与展望[J]. 古地理学报, 2011, 13(2): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201102015.htm
Yin Y S, Zhang C M, Li J Y, et al. Progress and prospect of multiple-point geostatistics[J]. Journal of Palaeogeography, 2011, 13(2): 245-252(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201102015.htm
|
[4] |
王鹏飞, 高振南, 李俊飞, 等. 基于数理统计方法的地质模型不确定性评价[J]. 地质科技情报, 2019, 38(2): 291-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902035.htm
Wang P F, Gao Z N, Li J F, et al. Uncertainty evaluation of geology model based on mathematics statistics[J]. Geological Science and Technology Information, 2019, 38(2): 291-269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902035.htm
|
[5] |
田启川, 王满丽. 深度学习算法研究进展[J]. 计算机工程与应用, 2019(22): 25-33. doi: 10.3778/j.issn.1002-8331.1908-0359
Tian Q C, Wang M L. Research progress on deep learning algorithms[J]. Computer Engineering and Applications, 2019(22): 25-33(in Chinese with English abstract). doi: 10.3778/j.issn.1002-8331.1908-0359
|
[6] |
李苍柏, 范建福, 宋相龙. 深度学习在地质学上的应用[J]. 地质学刊, 2018, 42(1): 115-121. doi: 10.3969/j.issn.1674-3636.2018.01.015
Li C B, Fan J F, Song X L. A study on application of deep learning in geology[J]. Journal of Geology, 2018, 42(1): 115-121(in Chinese with English abstract). doi: 10.3969/j.issn.1674-3636.2018.01.015
|
[7] |
Al-Anazi A, Gates I. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs[J]. Engineering Geology, 2010, 114(3): 267-277.
|
[8] |
Korjani M, Popa A, Grijalva E, et al. A new approach to reservoir characterization using deep learning neural networks[C]//Anon. SPE western regional meeting. Society of Petroleum Engineers, 2016.
|
[9] |
郝扬, 周景润, 蔡璇. 卷积神经网络在石油勘探开发领域的应用研究[J]. 信息系统工程, 2020, 323(11): 140-142.
Hao Y, Zhou J R, Cai X. Research on application of convolutional neural network in the field of petroleum exploration and development[J]. Information System Engineering, 2020, 323(11): 140-142(in Chinese with English abstract).
|
[10] |
付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1): 293-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801026.htm
Fu C, Lin N T, Zhang D, et al. Prediction of reservoirs using multi-component seismic data and the deep learning method[J]. Chinese Journal of Geophysics, 2018, 61(1): 293-303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801026.htm
|
[11] |
刘力辉, 陆蓉, 杨文魁. 基于深度学习的地震岩相反演方法[J]. 石油物探, 2019, 58(1): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201901015.htm
Liu L H, Lu R, Yang W K. Seismic lithofacies inversion based on deep learning[J]. Geophysical Prospecting for Petroleum, 2019, 58(1): 127-133(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201901015.htm
|
[12] |
Canchumuni S A, Emerick A A, Pacheco M A. Integration of ensemble data assimilation and deep learning for history matching facies models[C]//Anon. Offshore Technology Conference, Society of Petroleum Engineers, Brasil, 2017.
|
[13] |
陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9999.shtml
Chen Q Y, Liu G, He Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9999.shtml
|
[14] |
Strebelle S B, Journel A G. Reservoir modeling using multiple-point statistics[C]//Anon. SPE annual technical conference and exhibition. [S. l. ]: Society of Petroleum Engineers, 2001.
|
[15] |
Mariethoz G, Caers J. Multiple-point geostatistics: Stochastic modeling with training images[M]. Oxford, UK: John Wiley & Sons, 2014.
|
[16] |
王恺其, 肖凡. 多点地质统计学的理论、方法、应用及发展现状[J]. 地质科技情报, 2019, 38(6): 256-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm
Wang K Q, Xiao F. Multiple-ponits geostatistics: A review of theories, methods and applications[J]. Geological Science and Technology Information, 2019, 38(6): 256-268(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm
|
[17] |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. http://database.oxfordjournals.org/external-ref?access_num=10.1162/neco.2006.18.7.1527&link_type=DOI
|
[18] |
Kingma D P, Welling M. Auto-encoding variational bayes[C]//Anon. Proceedings of the 2nd international conference on learning representations, Banff, AB, Canada, 2014.
|
[19] |
Canchumuni S W A, Emerick A A, Pacheco M A C. Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother[J]. Computers & Geosciences, 2019, 128: 87-102.
|
[20] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Anon. Advances in neural information processing systems, 2014.
|
[21] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Anon. International conference on medical image computing and computer-assisted intervention. Cham: Springer, 2015.
|
[22] |
Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training gans[C]//Anon. Advances in neural information processing systems, 2016.
|
[23] |
Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[C]//Anon. Proceedings of the 34th international conference on machine learning, 2017.
|
[24] |
Zhong Z, Sun A Y, Jeong H. Predicting CO2 plume migration in heterogeneous formations using conditional deep convolutional generative adversarial network[J]. Water Resources Research, 2019, 55(7): 5830-5851. doi: 10.1029/2018WR024592
|
[25] |
Laloy E, Hérault R, Jacques D, et al. Training-image based geostatistical inversion using a spatial generative adversarial neural network[J]. Water Resources Research, 2018, 54(1): 381-406. http://arxiv.org/abs/1708.04975v2
|
[26] |
Chavdarova T, Fleuret F. SGAN: An alternative training of generative adversarial networks[C]//Anon. Conference on computer vision and pattern recognition(Cvpr). IEEE, 2018.
|
[27] |
Chan S, Elsheikh A H. Parametric generation of conditional geological realizations using generative neural networks[J]. Computational Geosciences, 2019, 23(5): 925-952. doi: 10.1007/s10596-019-09850-7
|
[28] |
Li Q, Aguilera R. Unsupervised statistical learning with integrated pattern-based geostatistical simulation[C]//Anon. SPE western regional meeting. [S.l.]: Society of Petroleum Engineers, 2018.
|
[29] |
Mosser L, Dubrule O, Blunt M J. Reconstruction of three-dimensional porous media using generative adversarial neural networks[J]. Physical Review E., 2017, 96(4): 043309. http://europepmc.org/abstract/MED/29347591
|
[30] |
Mosser L, Dubrule O, Blunt M J. Stochastic reconstruction of an oolitic limestone by generative adversarial networks[J]. Transport in Porous Media, 2018, 125(1): 81-103. doi: 10.1007/s11242-018-1039-9
|
[31] |
谢鹏飞. 基于深度学习的地质统计学反演方法[D]. 武汉: 长江大学, 2019.
Xie P F. Geostatistical inversion method based on deep learning[D]. Wuhan: Yangtze University, 2019(in Chinese with English abstract).
|
[32] |
Mosser L, Dubrule O, Blunt M J. Stochastic seismic waveform inversion using generative adversarial networks as a geological prior[J]. Mathematical Geosciences, 2020, 52(1): 53-79.
|
[33] |
Dupont E, Zhang T, Tilke P, et al. Generating realistic geology conditioned on physical measurements with generative adversarial networks[J]. arXiv preprint arXiv: 1802.03065, 2018.
|
[34] |
Mosser L, Dubrule O, Blunt M J. Conditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models[J]. arXiv preprint arXiv: 1802.05622, 2018.
|
[35] |
Yeh R A, Chen C, Lim T Y, et al. Semantic image inpainting with deep generative models[C]//Anon. IEEE conference on computer vision and pattern recognition(CVPR). IEEE, 2017.
|
[36] |
Zhang T F, Tilke P, Dupont E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16(3): 541-549. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=SYKX201903006
|
[37] |
Ruffino C, Hérault R, Laloy E, et al. Pixel-wise conditioned generative adversarial networks for image synthesis and completion[J]. arXiv preprint arXiv: 2002.01281, 2020.
|
[38] |
Chan S, Elsheikh A H. Parametrization of stochastic inputs using generative adversarial networks with application in geology[J]. Frontiers in Water, 2020, 2(5): 1-21. http://arxiv.org/abs/1904.03677
|
[39] |
Song S, Mukerji T, Hou J. Geological facies modeling based on progressive growing of generative adversarial networks(GANs)[J]. EarthArXiv. June 22. doi: 10.31223/osf.io/ycufs.
|
[40] |
Song S, Mukerji T, Hou J. Conditional facies modeling using an improved progressive growing of generative adversarial networks(GANs)[J]. non-peer reviewed preprint submitted to EarthArXiv, DOI: 10.31223/osf.io/fm24b.
|
[41] |
Deutsch C V, Wang L. Hierarchical object-based stochastic modeling of fluvial reservoirs[J]. Mathematical Geology, 1996, 28(7): 857-880. doi: 10.1007/BF02066005
|
[42] |
Korjani M, Popa A, Grijalva E, et al. A new approach to reservoir characterization using deep learning neural networks[C]//Anon. SPE western regional meeting. [S.l.]: Society of Petroleum Engineers, 2016.
|
[43] |
侯晓琳. 深度学习在地质储层属性预测中的应用研究[J]. 计算机应用与软件, 2020, 37(4): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202004008.htm
Hou X L. Application on deep learning in geological reservoir properties prediction[J]. Computer Applications and Software, 2020, 37(4): 40-47(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202004008.htm
|
[44] |
Saikia P, Baruah R D, Singh S K, et al. Artificial neural networks in the domain of reservoir characterization: A review from shallow to deep models[J]. Computers & Geosciences, 2020, 135: 104357. http://www.sciencedirect.com/science/article/pii/S0098300418305417
|
[45] |
Nesvold E, Mukerji T. Geomodeling using generative adversarial networks and a database of satellite imagery of modern river deltas[C]//Anon. Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019.
|
[46] |
吴冲龙, 刘刚, 周琦, 等. 地质科学大数据统合应用的基本问题[J]. 地质科技通报, 2020, 39(4): 1-11. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9993.shtml
Wu L C, Liu G, Zhou Q, et al. Fundamental problems of integrated application of big data in geoscience[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 1-11(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9993.shtml
|
[47] |
Pesaresi M, Syrris V, Julea A. A new method for earth observation data analytics based on symbolic machine learning[J]. Remote Sensing, 2016, 8(5): 391-399. http://www.ingentaconnect.com/content/doaj/20724292/2016/00000008/00000005/art00046
|