Citation: | Pan Huanying, Zou Changjian, Bi Junbo, Liu Yunde, Huang Liwen. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312 |
[1] |
Vetrimurugan E, Elango L, Rajmohan N. Sources of contaminants and groundwater quality in the coastal part of a river delta[J]. International Journal of Environmental Science & Technology, 2013, 10(3): 473-486. doi: 10.1007/s13762-012-0138-3
|
[2] |
Kulkarni H, Shah M, Shankar V. Shaping the contours of groundwater governance in India[J]. Journal of Hydrology: Regional Studies, 2015, 4: 172-192. http://www.sciencedirect.com/science/article/pii/S2214581814000469
|
[3] |
Li P Y, Wu J H, Qian H. Hydrogeochemistry and auality assessment of shallow groundwater in the southern part of the Yellow River Alluvial Plain (Zhongwei Section), Northwest China[J]. Earth Sciences Research Journal, 2014, 18: 27-38. doi: 10.15446/esrj.v18n1.34048
|
[4] |
吕晓立, 刘景涛, 朱亮, 等. 甘肃省秦王川盆地地下水氟富集特征及影响因素[J]. 干旱区资源与环境, 2020, 34(3): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202003027.htm
Lu X L, Liu J T, Zhu L, et al. Evolution feature and gensis of fluoride groundwater in shallow aquifer from Qin Wangchuan Basin[J]. Journal of Arid Land Resources and Environment, 2020, 34(3): 188-195(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202003027.htm
|
[5] |
Duan Q, Jiao J, Chen X, et al. Association between water fluoride and the level of children's intelligence: A dose-response meta-analysis[J]. Public Health, 2018, 154: 87-97. doi: 10.1016/j.puhe.2017.08.013
|
[6] |
Choi A L, Sun G, Zhang Y, et al. Developmental fluoride neurotoxicity: A systematic review and meta-analysis[J]. Environmental Health Perspectives, 2012, 120(10): 1362-1368. doi: 10.1289/ehp.1104912
|
[7] |
Choi A L, Zhang Y, Sun G, et al. Association of lifetime exposure to fluoride and cognitive functions in Chinese children: A pilot study[J]. Neurotoxicology and Teratology, 2015, 47: 96-101. doi: 10.1016/j.ntt.2014.11.001
|
[8] |
Su C L, Wang Y X, Xie X J, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environ. Sci. : Processes Impacts, 2015, 17(4): 791-801. doi: 10.1039/C4EM00584H
|
[9] |
Li P Y, He X D, Li Y, et al. Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: A case study of Tongchuan, Northwest China[J]. Exposure and Health, 2019, 11(2), 95-107. doi: 10.1007/s12403-018-0278-x
|
[10] |
孙一博, 王文科, 张春潮, 等. 关中盆地浅层高氟水形成演化机制[J]. 水文地质工程地质, 2013, 40(6): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201306023.htm
Sun Y B, Wang W K, Zhang C C, et al. Evolution mechanism of shallow high fluoride groundwater in the Guanzhong Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 117-122(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201306023.htm
|
[11] |
Luo W T, Gao X B, Zhang X. Geochemical processes controlling the groundwater chemistry and fluoride contamination in the Yuncheng Basin, China: An area with complex hydrogeochemical conditions[J]. Plos One, 2018, 13(7): e0199082. doi: 10.1371/journal.pone.0199082
|
[12] |
Li D N, Gao X B, Wang Y X, et al. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China[J]. Environmental Pollution, 2018, 237: 430-441. doi: 10.1016/j.envpol.2018.02.072
|
[13] |
孟春霞, 郑西来, 王成见. 平度市高氟地下水分布特征及形成机制研究[J]. 中国海洋大学学报: 自然科学版, 2019, 49(11): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201911013.htm
Meng C X, Zheng X L, Wang C J. Study on the distribution characteristics and formation mechanism of high fluorine groundwater in Pingdu City[J]. Periodical of Ocean University of China, 2019, 49(11): 111-119(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201911013.htm
|
[14] |
吴初, 武雄, 张艳帅, 等. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018, 25(4): 307-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804032.htm
Wu C, Wu X, Zhang Y S, et al. Distribution characteristics and genesis of high-fluoride groundwater in the Niuxin Mountain, Qinhuangdao[J]. Earth Science Frontiers, 2018, 25(4): 307-315(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804032.htm
|
[15] |
Singh C K, Kumari R, Singh N, et al. Fluoride enrichment in aquifers of the Thar Desert: Controlling factors and its geochemical modelling[J]. Hydrological Processes, 2013, 27(17): 2462-2474. doi: 10.1002/hyp.9247
|
[16] |
Su H, Wang J D, Liu J T. Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos Basin, northwestern China[J]. Environmental Pollution, 2019, 252: 1154-1162. doi: 10.1016/j.envpol.2019.06.046
|
[17] |
Ali W, Aslam M W, Junaid M, et al. Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan[J]. Environmental Pollution, 2019, 249: 535-549. doi: 10.1016/j.envpol.2019.03.043
|
[18] |
Tang Y L, Guan X H, Wang J M, et al. Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions[J]. Journal of Hazardous Materials, 2009, 171(1/3): 774-779. http://europepmc.org/abstract/MED/19616377
|
[19] |
Li C C, Gao X B, Wang Y X. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China[J]. Science of the Total Environment, 2015, 508: 155-165. doi: 10.1016/j.scitotenv.2014.11.045
|
[20] |
KimY, Kim J Y, Kim K. Geochemical characteristics of fluoride in groundwater of Gimcheon, Korea: Lithogenic and agricultural origins[J]. Environmental Earth Sciences, 2011, 63(5): 1139-1148. doi: 10.1007/s12665-010-0789-7
|
[21] |
裴圣良, 白光宇, 田磊, 等. 内蒙古新巴尔虎右旗高氟水分布特征及成因分析[J]. 地球与环境, 2020, 48(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202002006.htm
Pei S L, Bai G Y, Tian L, et al. Spatial distribution characteristics and origin of high fluorine groundwater in Xin Barag Youqi, Inner Mongolia[J]. Earth and Environment, 2020, 48(2): 203-209(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202002006.htm
|
[22] |
Jia Y F, Xi B, Jiang Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of the Total Environment, 2018, 643: 967-993. doi: 10.1016/j.scitotenv.2018.06.201
|
[23] |
付炜. 阿克苏河流域自然环境中氟的分布与地方性氟中毒区水化学分析[J]. 应用科学学报, 2002(2): 197-201. doi: 10.3969/j.issn.0255-8297.2002.02.019
Fu W. The distribution of fluoride in the natural environment of the Aksu River Basin and a chemical analysis of the water in endemic fluorosis regions[J]. Journal of Applied Science, 2002(2): 197-201(in Chinese with English abstract). doi: 10.3969/j.issn.0255-8297.2002.02.019
|
[24] |
李麟, 曾妍妍, 栾风娇, 等. 新疆喀什噶尔河流域高氟地下水富集因素分析[J]. 地下水, 2020, 42(3): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202003001.htm
Li L, Zeng Y Y, Luan F J, et al. The enrichment factors of high fluoride groundwater in the Kashgar River Basin, Xinjiang[J]. Ground Water, 2020, 42(3): 1-3(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202003001.htm
|
[25] |
张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm
Zhang J, Zhou J L, Nai W H, et al. Characteristics of high fluoride groundwater in plain of Yarkant River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 100-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm
|
[26] |
李玲, 周金龙, 齐万秋, 等. 和田河流域绿洲区地下水中氟的分布特征及形成过程[J]. 干旱区资源与环境, 2019, 33(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201901018.htm
Li L, Zhou J L, Qi W Q, et al. Distribution and formation process of fluorine in groundwater in oasis area of Hotan river basin[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 112-118(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201901018.htm
|
[27] |
黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10082.shtml
Huang Y W, Du Y, Xu Y, et al. Source and enrichment mechanism of ammonium in shallow confined aquifer in the west of Dongting Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 165-174(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10082.shtml
|
[28] |
邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征[J]. 地质科技情报, 2019, 38(1): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901028.htm
Wu J X, Yu Q, Jiang Q K, et al. Geochemical characteristics of groundwater and aquifer sediments in high arsenic groundwater in Jianghan Plain[J]. Geological Science and Technology Information, 2019, 38(1): 250-257(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901028.htm
|
[29] |
叶传永, 郑绵平. 青海尕斯库勒盐湖水体的化学组分存在形式及饱和指数研究[J]. 科技导报, 2016, 34(21): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201621022.htm
Ye C Y, Zheng M P. Study on the existence forms of chemical composition and saturation index of waters from Gasikule Salt Lake, Qinghai Province[J]. Science and Technology, 2016, 34(21): 101-111(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201621022.htm
|
[30] |
Schoeller H. Qualitative evaluation of groundwater resources (in methods and techniques of groundwater investigation and development)[J]. Water Research, 1967, 33: 44-52. http://www.researchgate.net/publication/298455180_Qualitative_evaluation_of_groundwater_resources_in_methods_and_techniques_of_groundwater_investigation_and_development
|
[31] |
Li P Y, Wu J H, Qian H. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China[J]. Environmental Earth Sciences, 2013, 69(7): 2211-2225. doi: 10.1007/s12665-012-2049-5
|
[32] |
阿依简·波拉提汗, 李升, 葛燕燕, 等. 阿克苏河流域潜水氟含量分布与形成特征[J]. 干旱区资源与环境, 2020, 34(6): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202006026.htm
Bolatihan A, Li S, Ge Y Y, et al. Analysis of distribution and formation of underground water fluoride in Aksu river[J]. Journal of Arid Land Resources and Environment, 2020, 34(6): 153-158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202006026.htm
|
[33] |
李巧, 贾瑞亮, 周金龙, 等. 新疆阿克苏地区高氟地下水化学特征分析[J]. 干旱区资源与环境, 2013, 27(12): 87-92. doi: 10.3969/j.issn.1003-7578.2013.12.015
Li Q, Jia R L, Zhou J L, et al. Analysis of chemical characteristics of high-fluoride groundwater in Aksu prefecture, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2013, 27(12): 87-92(in Chinese with English abstract). doi: 10.3969/j.issn.1003-7578.2013.12.015
|
[34] |
李文鹏, 郝爱兵. 中国西北内陆干旱盆地地下水形成演化模式及其意义[J]. 水文地质工程地质, 1999, 26(4): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG904.008.htm
Li W P, Hao A B. Groundwater formation and evolution model of inland arid basin in northwest China and its significance[J]. Hydrogeology & Engineering Geology, 1999, 26(4): 3-5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG904.008.htm
|
[35] |
陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7): 1800-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007007.htm
Chen J S, Zhou J L, Chen Y F, et al. Spatial distribution and enrichment factors of fluoride in groundwater in Kashgar Region, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1800-1808(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007007.htm
|
[36] |
梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9922.shtml
Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9922.shtml
|
[37] |
Su C L, Wang Y X, Pan Y L. Hydrogeochemical and isotopic evidences of the groundwater regime in Datong Basin, Northern China[J]. Environmental Earth Sciences, 2013, 70(2): 877-885. doi: 10.1007/s12665-012-2176-z
|
[38] |
Guo Q H, Wang Y X, Ma T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China[J]. Journal of Geochemical Exploration, 2007, 93(1): 1-12. doi: 10.1016/j.gexplo.2006.07.001
|
[39] |
Jacks G, Bhattacharya P, Chaudhary V, et al. Controls on the genesis of some high-fluoride groundwaters in India[J]. Applied Geochemistry, 2005, 20(2): 221-228. doi: 10.1016/j.apgeochem.2004.07.002
|
[40] |
Arusei G M K. Lake-groundwater relationships and fluid-rock interaction in the East African Rift Valley: Isotopic evidence[J]. Journal of African Earth Sciences, 1996, 22: 423-431. doi: 10.1016/0899-5362(96)00026-7
|