Citation: | Qu Zhipeng, Wang Fangfang, Zhang Yunyin, Li Xiaochen. Thickness prediction of seismic multi-attributes sand based on association rules and random forests[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 211-218. doi: 10.19509/j.cnki.dzkq.2021.0314 |
[1] |
Chopra S, Marfurt K J J G. Seismic attributes: A historical perspective[J]. Geophysics, 2005, 70(5): 3-28. doi: 10.1190/1.2098670
|
[2] |
Leiphart D J, Hart B S. Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico[J]. Geophysics, 2001, 66(5): 1349-1358. doi: 10.1190/1.1487080
|
[3] |
Hampson D P, Schuelke J S, Quirein J A. Use of multiattribute transforms to predict log properties from seismic data[J]. Geophysics, 2001, 66(1): 220-236. doi: 10.1190/1.1444899
|
[4] |
万里明, 吴均, 卢军凯, 等. 基于Adam-神经网络的致密砂岩脆性评价方法: 以南堡凹陷高北边坡为例[J]. 地质科技通报, 2020, 39(2): 94-103. http://dzkjqb.cug.edu.cn/CN/abstract/abstract9978.shtml
Wan L M, Wu J, Lu J K, et al. Brittleness evaluation method of tight sandstone based on Adam-neural network: A case study of a block in Gaobei Slope, Nanpu Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 94-103(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract9978.shtml
|
[5] |
Na'imi S R, Shadizadeh S R, Riahi M A, et al. Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach[J]. Journal of Applied Geophysics, 2014, 107: 93-101. doi: 10.1016/j.jappgeo.2014.05.011
|
[6] |
宋建国, 高强山, 李哲. 随机森林回归在地震储层预测中的应用[J]. 石油地球物理勘探, 2016, 51(6): 1202-1211. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201606021.htm
Song J G, Gao Q S, Li Z. Application of random forests for regression to seismic reservoir prediction[J]. Oil Geophysical Prospecting, 2016, 51(6): 1202-1211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201606021.htm
|
[7] |
Ao Y, Li H, Zhu L, et al. Identifying channel sand-body from multiple seismic attributes with an improved random forest algorithm[J]. Journal of Petroleum Science and Engineering, 2019, 173: 781-792. doi: 10.1016/j.petrol.2018.10.048
|
[8] |
闫星宇, 顾汉明, 肖逸飞, 等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探, 2019, 54(2): 447-455. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201902024.htm
Yan X Y, Gu H M, Xiao Y F, et al. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data[J]. Oil Geophysical Prospecting, 2019, 54(2): 447-455(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201902024.htm
|
[9] |
付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1): 293-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801026.htm
Fu C, Lin N T, Zhang D, et al. Prediction of reservoirs using multi-component seismic data and the deep learning method[J]. Chinese Journal of Geophysics (in Chinese with English abstract), 2018, 61(1): 293-303(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801026.htm
|
[10] |
马瑶, 赵江南. 机器学习方法在矿产资源定量预测应用研究进展[J]. 地质科技通报, 2021, 40(1): 132-141. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10099.shtml
Ma Y, Zhao J N. Advances in the application of machine learning methods in mineral prospectivity mapping[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 132-141(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10099.shtml
|
[11] |
郭天颂, 张菊清, 韩煜, 等. 基于粒子群优化支持向量机的延长县滑坡易发性评价[J]. 地质科技情报, 2019, 38(3): 236-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903025.htm
Guo T S, Zhang J Q, Han Y, et al. Evaluation of landslide susceptibility in Yanchang County based on particle swarm optimization-based support vector machine[J]. Geological Science and Technology Information, 2019, 38(3): 236-243(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903025.htm
|
[12] |
印兴耀, 周静毅. 地震属性优化方法综述[J]. 石油地球物理勘探, 2005, 40(4): 482-489. doi: 10.3321/j.issn:1000-7210.2005.04.027
Yin X Y, Zhou J Y. Summary of optimum methods of seismic attributes[J]. Oil Geophysical Prospecting, 2005, 40(4): 482-489(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.2005.04.027
|
[13] |
王晓阳, 桂志先, 高刚, 等. K-L变换地震属性优化及其在储层预测中的应用[J]. 石油天然气学报, 2008, 30(3): 96-98. doi: 10.3969/j.issn.1000-9752.2008.03.022
Wang X Y, Gui Z X, Gao G, et, al. Seismic attribute optimization and its application in reservoir prediction by using K-L transform[J]. Journal of Oil and Gas Technology, 2008, 30(3): 96-98. doi: 10.3969/j.issn.1000-9752.2008.03.022
|
[14] |
Singh Y. Lithofacies detection through simultaneous inversion and principal component attributes[J]. The Leading Edge, 2007, 26(12): 1568-1575. doi: 10.1190/1.2821944
|
[15] |
Roden R, Smith T, Sacrey D. Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps[J]. Interpretation, 2015, 3(4): 59-83. https://library.seg.org/journal/inteio
|
[16] |
倪艳. Isomap算法在地震属性参数降维中的应用[D]. 成都: 成都理工大学, 2007.
Ni Y. Nonlinear dimensionality reduction of Isomap in the analysis of seismic attribute parameter data[D]. Chengdu: Chengdu University of Technology, 2007(in Chinese with English abstract).
|
[17] |
Liu X F, Zheng X D, Xu G C, et al. Locally linear embedding-based seismic attribute extraction and applications[J]. Applied Geophysics, 2010, 7(4): 365-375. doi: 10.1007/s11770-010-0260-2
|
[18] |
宋维琪, 刘江华, 王小马, 等. 预测油气的地震属性优化组合、灰关联分析技术[J]. 石油勘探与开发, 2002, 29(5): 34-36. doi: 10.3321/j.issn:1000-0747.2002.05.011
Song W Q, Liu J H, Wang X M, et al. Applying optimum combination of sciesmic attribute and gray correlotion analysis technology to the prediction of oil and gas reservoirs[J]. Petroleum Exploration and Development, 2002, 29(5): 34-36(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2002.05.011
|
[19] |
何琰, 彭文, 殷军. 利用地震属性预测渗透率[J]. 石油学报, 2001, 22(6): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106006.htm
He Y, Peng W, Yin J. Permeability prediction by Seismic Attribute data[J]. Acta Petrolei Sinica, 2001, 22(6): 34-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106006.htm
|
[20] |
谢东, 王永刚, 乐友喜, 等. 地震属性分析技术在子寅油田开发中的应用[J]. 石油物探, 2003, 42(1): 72-76. doi: 10.3969/j.issn.1000-1441.2003.01.016
Xie D, Wang Y G, Yue Y X, et al. Application of seismic attribute analysis technology in the production of Ziyin Oilfield[J]. Geophysical Prospecting for Petroleum, 2003, 42(1): 72-76(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2003.01.016
|
[21] |
Dorrington K P, Link C A. Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction[J]. Seg Technical Program Expanded Abstracts, 2004, 21(1): 212-221. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000021000001001654000001&idtype=cvips&prog=normal
|
[22] |
黄捍东, 赵迪, 张如伟, 等. 基于灰关联和遗传算法的地震属性优化方法[J]. 石油地球物理勘探, 2010, 45(3): 381-383. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201003010.htm
Huang H D, Zhao D, Zhang R W, et al. Seismic attribute optimization method based on grey relational analysis and genetic algorithm[J]. Oil Geophysical Prospecting, 2010, 45(3): 381-383(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201003010.htm
|
[23] |
武建华, 宋擒豹, 沈均毅, 等. 基于关联规则的特征选择算法[J]. 模式识别与人工智能, 2009, 22(2): 256-262. doi: 10.3969/j.issn.1003-6059.2009.02.013
Wu J H, Song Q B, Shen J Y, et al. Feature selection algorithm based on association rules[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(2): 256-262(in Chinese with English abstract). doi: 10.3969/j.issn.1003-6059.2009.02.013
|
[24] |
Chenxi H, Xin H, Yu F, et al. Sample imbalance disease classification model based on association rule feature selection[J]. Pattern Recognition Letters, 2020, 133. https://www.sciencedirect.com/science/article/pii/S0167865520300945
|
[25] |
刘小珊, 罗文强, 李飞翱, 等. 基于关联规则的滑坡演化阶段判识指标[J]. 地质科技情报, 2014, 33(2): 160-164. doi: 10.3969/j.issn.1009-6248.2014.02.018
Liu X S, Luo W Q, Li F A, et al. Identification index of landslide evolution stage based on association rule[J]. Geological Science and Technology Information, 2014, 33(2): 160-164(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2014.02.018
|
[26] |
袁照威. 基于机器学习与多信息融合的致密砂岩储层井震解释方法研究[D]. 北京: 中国地质大学(北京), 2017.
Yuan Z W. Interpretation methods of tight sandstone reservoir with seismic data and well logs based on machine learning method and multi-information fusion[D]. Beijing: China University of Geosciences (Beijing), 2017.
|
[27] |
Agrawal R. Mining association rules between sets of items in large databases[C]//Anon. Acm Sigmod International Conference on Management of Data. [S. l. ]: [s. n. ], 1993.
|
[28] |
Agrwal R. Fast algorithms for mining association rules in large databases[C]//Anon. Proceedings of the international conference on very large data bases. [S. l. ]: [s. n. ], 1994.
|
[29] |
Han J, Pei J, Yin Y, et al. Mining frequent patterns without candidate generation: A frequent-pattern tree approach[J]. Data Mining & Knowledge Discovery, 2004, 8(1): 53-87. http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1023/B:DAMI.0000005258.31418.83&rfr_id=trans/td/2008/07/ttd2008070865.htm
|
[30] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|