Citation: | Li Xiao, Wu Liming, Wang Bingxian, Hu Qiuyuan, Dong Dawei. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603 |
[1] |
于豪, 黄家强, 兰雪梅, 等. 川西北双鱼石地区栖霞组地震资料优化处理及裂缝预测技术应用[J]. 科学技术与工程, 2020, 20(22): 8934-8942. doi: 10.3969/j.issn.1671-1815.2020.22.012
Yu H, Huang J Q, Lan X M, et al. Application of seismic data optimal processing and fracture prediction in the Shuangyushi Block, Northwest Sichuan[J]. Science Technology and Engineering, 2020, 20(22): 8933-8942(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2020.22.012
|
[2] |
孙文峰, 李玮, 李卓, 等. 页岩储层微裂缝发育程度预测方法[J]. 科学技术与工程, 2019, 19(19): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm
Sun W F, Li W, Li Z, et al. Prediction method of micro-fracture development degree of shale reservoir[J]. Science Technology and Engineering, 2019, 19(19): 118-123(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201919019.htm
|
[3] |
刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
Liu J S, Ding W L, Xiao Z K, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906019.htm
|
[4] |
李梦萍, 戴俊生, 王硕, 等. 渤南洼陷古近纪早中期应力场数值模拟及其与断层发育的关系[J]. 地质科技情报, 2017, 36(4): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704006.htm
Li M P, Dai J S, Wang S, et al. Tectonic stress field simulation of early-middle paleogene and its relationship with fault development in Bonan Sub-sag[J]. Geological Science and Technology Information, 2017, 36(4): 42-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704006.htm
|
[5] |
Guo P, Ren D S, Xue Y H. Simulation of multi-period tectonic stress fields and distribution prediction of tectonic fractures in tight gas reservoirs: A case study of the Tianhuan Depression in western Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 109: 530-546. doi: 10.1016/j.marpetgeo.2019.06.026
|
[6] |
Ren Q Q, Jin Q, Feng J W, et al. Simulation of stress fields and quantitative prediction of fractures distribution in upper Ordovician biological limestone formation within Hetianhe field, Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2018, 173: 1236-1253. doi: 10.1017/s0024282916000463
|
[7] |
张继标, 刘士林, 戴俊生, 等. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测[J]. 地质力学学报, 2019, 25(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902003.htm
Zhang J B, Liu S L, Dai J S, et al. The quantitative prediction of structural fractures in Ordovician reservoir in Yubei area, Tarim Basin[J]. Journal of Geomechanics, 2019, 25(2): 177-186(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201902003.htm
|
[8] |
张浩然, 姜华, 陈志勇, 等. 四川盆地及周缘地区加里东运动幕次研究现状综述[J]. 地质科技通报, 2020, 39(5): 118-126. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml
Zhang H R, Jiang H, Chen Z Y, et al. A review of the research status of Caledonian movement stages in Sichuan Basin and surrounding areas[J]. Bulletin of Geological Science and Techonlogy, 2020, 39(5): 118-126(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10057.shtml
|
[9] |
胡秋媛, 李理. 鲁西地区晚中生代-古近纪伸展构造的应力场数值模拟[J]. 石油实验地质, 2015, 37(2): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502021.htm
Hu Q Y, Li L. Numerical simulations of tectonic stress fields for Late Mesozoic-Paleogene extensional tectonics in western Shandong[J]. Petroleum Geology & Experiment, 2015, 37(2): 259-266(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201502021.htm
|
[10] |
Wang R Y, Ding W L, Gong D J, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37(7): 832-845. http://d.wanfangdata.com.cn/periodical/syxb201607002
|
[11] |
Zhao G, Ding W L, Sun Y X, et al. Fracture development characteristics and controlling factors for reservoirs in the Lower Silurian Longmaxi Formation marine shale of the Sangzhi block, Hunan Province, China-Science Direct[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106470-106470. doi: 10.1016/j.petrol.2019.106470
|
[12] |
张宝一, 刘肖莉, 蒙菲, 等. 红透山铜矿区F8断层构造应力场的有限元数值模拟[J]. 地质找矿论丛, 2021, 36(1): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202101014.htm
Zhang B Y, Liu X L, Meng F, et al. Finite element numerical simulation of tectonic stress field of fault F8 in Hongtoushan copper mine[J]. Contributions to Geology and Mineral Resources Research, 2021, 36(1): 114-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202101014.htm
|
[13] |
Ju W, Wang J, Fang H, et al. Paleotectonic stress field modeling and prediction of natural fractures in the Lower Silurian Longmaxi shale reservoirs, Nanchuan region, South China[J]. Mar. Pet. Geol., 2019, 100: 20-30. doi: 10.1016/j.marpetgeo.2018.10.052
|
[14] |
Jing T Y, Zhang J C, Xu S S, et al. Critical geological characteristics and gas bearing controlling factors in Longmaxi shales in southeastern Chongqing, China[J]. Energy Exploit, 2016, 34(1): 42-60. doi: 10.1177/0144598715623666
|
[15] |
赵瞻, 余谦, 周小琳, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10139.shtml
Zhao Z, Yu Q, Zhou X L, et al. Microscopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10139.shtml
|
[16] |
Zeng W T, Zhang J C, Ding W T, et al. Fracture development in Paleozoic shale of Chongqing area (South China). Part two: Numerical simulation of tectonic stress field and prediction of fractures distribution[J]. Journal of Asian Earth Sciences, 2013, 75(5): 267-279. http://www.sciencedirect.com/science/article/pii/S1367912013003635
|
[17] |
叶葱林. 金湖凹陷构造应力场模拟[D]. 青岛: 中国石油大学(华东), 2011.
Ye C L. The simulation of the tectonic stress field in Jinhu Depression[D]. Qingdao: China University of Petroleum (East China), 2011(in Chinese with English abstract).
|
[18] |
Fan J X, Melchin M J, Chen X, et al. Biostratigraphy of ordovician-silurian Longmaxi black graptolite shale in South China[J]. Earth Sciences, 2012, 24: 131-139. http://www.researchgate.net/publication/284147166_Biostratigraphy_of_Ordovician-Silurian_Longmaxi_black_graptolite_shale_inSouth_China
|
[19] |
Ding W L, Zeng W T, Wang R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. http://www.researchgate.net/publication/301554987_Method_and_application_of_tectonic_stress_field_simulation_and_fracture_distribution_prediction_in_shale_reservoir
|
[20] |
刘敬寿, 戴俊生, 徐珂, 等. 构造裂缝产状演化规律表征方法及其应用[J]. 吉林大学学报: 地球科学版, 2017, 47(1): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701008.htm
Liu J S, Dai J S, Xu K, et al. Method for the charaterization of the evolution of tectonic fracture attitudes and its application[J]. Journal of Jilin University: Earth Science Edition, 2017, 47(1): 84-94(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701008.htm
|