Citation: | Cao Shuyun, Zhou Dingkui. Geological process and carbon cycle significance of graphite carbon material in faults and subduction zones[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 101-111. doi: 10.19509/j.cnki.dzkq.2022.0240 |
Carbon is a common element in nature that exists in various forms, including single minerals (e.g., graphite and diamond), compounds (e.g., carbonate and carbon dioxide) and organic carbon in organisms. Graphitized carbonaceous materials often form or appear in the rocks of fault zones or subduction zones at different crustal depths and are especially abundant in some large earthquake fault zones. Previous studies have shown the significant role and status of graphitized carbonaceous materials in rock deformation behavior and geological evolution processes. This reveals that the texture of graphite crystals is sensitive to temperature. In the geological process, the crystalline order of carbonaceous materials, that is, the graphitization process, is irreversible, so that the peak metamorphic temperature can be recorded quantitatively. Graphite crystals also have other special structural and physical mechanical properties. Duringthe deformation process, it can effectively reduce the strength of rock and promote plastic deformation. The graphite material in the crust can weaken the rock strength and cause seismic fault slip, which plays an important role in thesolid lubricant and rheological weakening process of faulting or deformation in the fast-sliding or seismic sliding plane. Graphitic carbonaceous materials have low solubility and low mobility and often exist in the deep crust as carbon sinks. On the geological time scale, once carbon and graphitization participate in the rocks together, some major geological processes, such as subduction, faulting, weathering and erosion, as well as biological processes, can cause graphite carbonaceous materials to enrich or release carbon to the earth's surface (atmosphere) through the formation and destruction process, which will significantly affect the carbon cycle.
[1] |
Craw D, Upton P. Graphite reaction weakening of fault rocks, and uplift of the Annapurna Himal, central Nepal[J]. Geosphere, 2014, 10: 720-731. doi: 10.1130/GES01056.1
|
[2] |
Sverjensky D A, Stagno V, Huang F. Important role for organic carbon in subduction zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7: 909-913. doi: 10.1038/ngeo2291
|
[3] |
Cao S Y, Neubauer F. Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries[J]. Earth-Science Reviews, 2016, 162: 155-176. doi: 10.1016/j.earscirev.2016.09.010
|
[4] |
Cao S Y, Neubauer F. Graphitic material in fault zones: Implication for fault strength and carbon cycle[J]. Earth Science Review, 2019, 194: 109-124. doi: 10.1016/j.earscirev.2019.05.008
|
[5] |
曹淑云, 吕美霞. 变形石墨对构造-热过程的定量约束及流变弱化意义[J]. 地质学报, 2022, DOI: 10.19762/j.cnki.dizhixuebao.2022293.
Cao S Y, Lü M X. Quantitative constraint of tectono-thermal process by deformed graphite and its rheological weakening significance[J]. Acta Geologica Sinica, 2022, DOI: 10.19762/j.cnki.dizhixuebao.2022293 (in Chinese with English abstract).
|
[6] |
Kuo L W, Li H, Smith S A F, et al. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake[J]. Geology, 2014, 42: 47-50.
|
[7] |
Wopenka B, Pasteris J D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy[J]. Am. Mineral., 1993, 78: 533-557.
|
[8] |
Beyssac O, Rouzaud J N, Goffé B, et al. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study[J]. Contributions to Mineralogy and Petrology, 2002, 143(1): 19-31. doi: 10.1007/s00410-001-0324-7
|
[9] |
Buseck P, Beyssac O. From organic matter to graphite: Graphitization[J]. Elements, 2014, 10: 421-426. doi: 10.2113/gselements.10.6.421
|
[10] |
Rahl J M, Anderson K M, Brandon M T, et al. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece[J]. Earth and Planetary Science Letters, 2005, 240: 339-354. doi: 10.1016/j.epsl.2005.09.055
|
[11] |
吕美霞, 曹淑云, 李俊瑜, 等. 滇西哀牢山变质杂岩中含石墨岩石的变质-变形温度、构造特征及流变弱化意义[J]. 地质学报, 2019, 94(2): 491-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202002010.htm
Lü M X, Cao S Y, Li J Y, et al. The deformation-metamorphic temperature, structural characteristics and rheological weakening significance of the graphite-bearing rocks in the Ailaoshan metamorphic complex, western Yunnan[J]. Acta Geologica Sinica, 2019, 94(2): 491-510 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202002010.htm
|
[12] |
Lyu M X, Cao S Y, Neubauer F, et al. Deformation fabrics and strain localization mechanism in graphitic carbon-bearing rocks from the Ailaoshan—Red River strike-slip fault zone[J]. Journal of Structural Geology, 2020, 140: 104150. doi: 10.1016/j.jsg.2020.104150
|
[13] |
Kretz R. Graphite deformation in marble and mylonitic marble, Grenville Province, Canadian Shield[J]. Journal of Metamorphic Geology, 1996, 14: 399-412. doi: 10.1046/j.1525-1314.1996.05971.x
|
[14] |
Oohashi K, Han R, Hirose T, et al. Carbon-forming reactions under a reducing atmosphere during seismic fault slip[J]. Geology, 2014, 42(9): 787-790. doi: 10.1130/G35703.1
|
[15] |
Upton P, Craw D. Modelling the role of graphite in development of a mineralised mid-crustal shear zone, Macraes mine, New Zealand[J]. Earth and Planetary Science Letters, 2008, 266: 245-255. doi: 10.1016/j.epsl.2007.10.048
|
[16] |
Oohashi K, Hirose T, Kobayashi K, et al. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep[J]. Journal of Metamorphic Geology, 2012, 38: 39-50.
|
[17] |
Oberlin A. High-resolution TEM studies of carbonization anti graphitization[C]//Thrower P A. Chemistry and Physics of Carbon 22. New York: Marcel Dekker, 1989.
|
[18] |
Nakamura Y, Oohashi K, Toyoshima T, et al. Strain-induced amorphization of graphite in fault zones of the Hidaka metamorphic belt, Hokkaido, Japan[J]. Journal of Metamorphic Geology, 2015, 72: 142-161.
|
[19] |
Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38: 719-833. doi: 10.1016/j.orggeochem.2007.01.001
|
[20] |
Harris N B W, Jackson D H, Matte D P, et al. Carbon-isotope constraints on fluid advection during contrasting examples of incipient charnockite formation[J]. Journal of Metamorphic Geology, 1993, 11: 833-843. doi: 10.1111/j.1525-1314.1993.tb00193.x
|
[21] |
Wada H, Tomita T, Matsuura K, et al. Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan[J]. Contribut to Mineralogy and Petrology, 1994, 118: 217-228. doi: 10.1007/BF00306643
|
[22] |
Scharf A, Handy M R, Ziemann M A, et al. Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps): A study with Raman microspectroscopy on carbonaceous material (RSCM)[J]. Journal of Metamorphic Geology, 2013, 31: 863-880. doi: 10.1111/jmg.12048
|
[23] |
Selverstone J. Preferential embrittlement of graphitic schists during extensional unroofing in the Alps: The effect of fluid composition on rheology in low-permeability rocks[J]. Journal of Metamorphic Geology, 2005, 23: 461-470. doi: 10.1111/j.1525-1314.2005.00583.x
|
[24] |
Oohashi K, Hirose T, Shimamoto T. Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics[J]. Journal of Structural Geology, 2011, 33: 1122-1134. doi: 10.1016/j.jsg.2011.01.007
|
[25] |
Kaneki S, Hirono T, Mukoyoshi H, et al. Organochemical characteristics of carbonaceous materials as indicators of heat recorded on an ancient plate-subduction fault[J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 2855-2868. doi: 10.1002/2016GC006368
|
[26] |
Henry D G, Jarvis I, Gillmore G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936. doi: 10.1016/j.earscirev.2019.102936
|
[27] |
Beyssac O, Bollinger L, Avouac J P, et al. Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material[J]. Earth and Planetary Science Letters, 2004, 225: 233-241. doi: 10.1016/j.epsl.2004.05.023
|
[28] |
Ferralis N, Matys E D, Knoll A H, et al. Rapid, direct and non-destructive assessment of fossil organic matter via micro-Raman spectroscopy[J]. Carbon, 2016, 108: 440-449. doi: 10.1016/j.carbon.2016.07.039
|
[29] |
Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Org. Geochem., 2014, 71: 7-16. doi: 10.1016/j.orggeochem.2014.03.008
|
[30] |
Zeng Y, Wu C. Raman and infrared spectroscopic study of kerogen treated at elevated temperatures and pressures[J]. Fuel, 2007, 86: 1192-1200. doi: 10.1016/j.fuel.2005.03.036
|
[31] |
Pan D, Spanu L, Harrison B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceed. Nat. Acad. Sci. USA, 2013, 110: 6646-6650. doi: 10.1073/pnas.1221581110
|
[32] |
Beyssac O, Goffé B, Chopin C, et al. Raman spectra of carbonaceous material in metasediments: A new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871. doi: 10.1046/j.1525-1314.2002.00408.x
|
[33] |
Numelin T, Marone C, Kirby E. Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California[J]. Tectonics, 2007, 26: TC2004.
|
[34] |
Smith S A, Faulkner D R. Laboratory measurements of the frictional properties of the Zuccale low-angle normal fault, Elba Island, Italy[J]. Journal of Geophysical Research, 2010, 115: B02407.
|
[35] |
Schleicher A M, van der Pluijm B A, Warr L N. Nanocoatings of clay and creep of the San Andreas fault at Parkfi eld, California[J]. Geology, 2010, 38: 667-670.
|
[36] |
刘江, 李海兵, 司佳亮, 等. 汶川地震断裂带碳质来源、赋存特征及构造意义[J]. 地质学报, 2016, 90(10): 2567-1581. doi: 10.3969/j.issn.0001-5717.2016.10.003
Liu J, Li H B, Si J L, et al. Origin, formation and tectonic implications of carbonaceous material in the Wenchuan earthquake fault zone[J]. Acta Geologica Sinica, 2016, 90(10): 2567-1581 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.10.003
|
[37] |
Rutter E H, Hackston A J, Yeatman E, et al. Reduction of friction on geological faults by weak-phase smearing[J]. Journal of Geophysical Research, 2013, 51: 52-60.
|
[38] |
Furuichi H, Ujiie K, Kouketsu Y, et al. Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments[J]. Earth and Planetary Science Letters, 2015, 424: 191-200. doi: 10.1016/j.epsl.2015.05.037
|
[39] |
Kouketsu Y, Shimizu I, Wang Y, et al. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China: Comparisons with those of sedimentary and metamorphic rocks[J]. Tectonophysics, 2017, 699: 129-145. doi: 10.1016/j.tecto.2017.01.015
|
[40] |
Oohashi K, Hirose T, Shimamoto T. Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge[J]. Journal of Geophysical Research, 2013, 118: 2067-2084.
|
[41] |
Holdsworth R E. Weak faults—rotten core[J]. Science, 2004, 303(5655): 181-182. doi: 10.1126/science.1092491
|
[42] |
Collettini C, Niemeijer A, Viti C, et al. Fault zone fabric and fault weakness[J]. Nature, 2009, 462: 907-910. doi: 10.1038/nature08585
|
[43] |
Evans K A, Bickle M J, Skelton D L, et al. Reductive deposition of graphite at lithological margins in East Central Vermont: A Sr, C and O isotope study[J]. Journal of Metamorphic Geology, 2002, 20: 781-798. doi: 10.1046/j.1525-1314.2002.00403.x
|
[44] |
Luque F J, Ortega L, Barrenechea J F, et al. Deposition of highly crystalline graphite from moderate-temperature fluids[J]. Geology, 2009, 37: 275-278.
|
[45] |
Zulauf G, Palm S, Petschick R, et al. Element mobility and volumetric strain in brittle and brittle-viscous shear zones of the superdeep well KTB (Germany)[J]. Chemical Geology, 1999, 156: 135-149. doi: 10.1016/S0009-2541(98)00189-2
|
[46] |
Galvez M E, Beyssac O, Martinez I, et al. Graphite formation by carbonate reduction during subduction[J]. Nature Geoscience, 2013, 6: 473-477. doi: 10.1038/ngeo1827
|
[47] |
Hayes J M, Waldbauer J R. The carbon cycle and associated redox processes through time[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1470): 931-950. doi: 10.1098/rstb.2006.1840
|
[48] |
Cesare B. Graphite precipitation in C-O-H fluid inclusions: Closed system compositional and density changes, and thermobarometric implications[J]. Contributions to Mineralogy and Petrology, 1995, 122: 25-33. doi: 10.1007/s004100050110
|
[49] |
Ague J J, Nicolescu S. Carbon dioxide released from subduction zones by fluid-mediated reactions[J]. Nature Geosciences, 2014, 7: 355-360. doi: 10.1038/ngeo2143
|
[50] |
Crespo E, Luque J, Barrenechea J F, et al. Mechanical graphite transport in fault zones and the formation of graphite veins[J]. Mineralogical Magazine, 2005, 69: 463-470. doi: 10.1180/0026461056940266
|
[51] |
Cesare B, Meli S, Nodari L, et al. Fe3+ reduction during biotite melting in graphitic metapelites: Another origin of CO2 in granulites[J]. Contributions to Mineralogy and Petrology, 2005, 149: 129-140.
|
[52] |
Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth's interior[J]. Earth Planetary Science Letters, 2010, 298: 1-13.
|
[53] |
高中亮, 王艳飞, 雷胜兰, 等. 珠江口盆地CO2分布特征与成藏机制浅析[J]. 地质科技通报, 2022, 41(4): 57-68. doi: 10.19509/j.cnki.dzkq.2022.0204
Gao Z L, Wang Y F, Lei S L, et al. Distribution characteristics and accumulation mechanism of carbon dioxide gas reservoirs in the Pearl River Mouth Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0204
|
[54] |
Tarantola A, Mullis J, Vennemallu T, et al. Oxidation of methane at the CH4/H2O-(CO2) transition zone in the external part of the Central Alps, Switzerland: Evidence from stable isotope investigations[J]. Chemical Geology, 2007, , 237(3): 329-357.
|
[55] |
Frost B R. Mineral equilibria involving mixed-volatiles in a C-O-H fluid phase; the stabilities of graphite and siderite[J]. American Journal of Science, 1979, 279(9): 1033-1059.
|
[56] |
Caciagli N, Manning C. The solubility of calcite in water at 6-16 kbar and 500-800℃[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 275-285.
|
[57] |
Frezzotti M L, Selverstone J, Sharp Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
|
[58] |
Vitale Brovarone A, Martinez I, Elmaleh A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communication, 2017, 8: 14134.
|
[59] |
Tao R B, Zhang L F, Tian M, et al. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation[J]. Geochimica et Cosmochimica Acta, 2018, 239: 390-408.
|
[60] |
Zhu J J, Zhang L F, Tao R B, et al. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone[J]. Chemical Geology, 2020, 533: 119430.
|