Volume 43 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
YANG Zesen, LIN Jingjing, CHANG Qixin, ZHOU Aiguo, HUANG Xiaolong. Research trends and frontiers of groundwater-lake interaction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 306-317. doi: 10.19509/j.cnki.dzkq.tb20240463
Citation: YANG Zesen, LIN Jingjing, CHANG Qixin, ZHOU Aiguo, HUANG Xiaolong. Research trends and frontiers of groundwater-lake interaction[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 306-317. doi: 10.19509/j.cnki.dzkq.tb20240463

Research trends and frontiers of groundwater-lake interaction

doi: 10.19509/j.cnki.dzkq.tb20240463
More Information
  • Author Bio:

    YANG Zesen, E-mail: zesen_yang@foxmail.com

  • Corresponding author: LIN Jingjing, E-mail: jjlin90@163.com
  • Received Date: 18 Aug 2024
  • Accepted Date: 24 Oct 2024
  • Rev Recd Date: 24 Oct 2024
  • Significance

    To analyze the research trends and frontiers in the field of groundwater-lake interaction, we conducted a comprehensive review the relevant papers from the Web of Science (WOS) database. Using VOSviewer software, we mapped the developmental trajectory of research topics in the field. Core papers from both WOS and the China National Knowledge Infrastructure (CNKI) were analyzed to systematically summarize prominent topics, research tools, and existing gaps. Based on the historical development of the field, future trends were also predicted.

    Progress

    Our analysis identified three successive developmental stages in this field, including the individualism stage, the reductionism stage, and the holism stage. Current hot research topics focus on water exchange, solute transport, and ecosystem mutual feedback mechanisms. Several key challenges remain, such as the spatiotemporal heterogeneity of groundwater-lake interactions, biogeochemical processes at the groundwater-lake interface, and the delayed impact of aquifers on lake ecological restoration. The primary research methods are stable isotopes, radioisotopes, temperature tracing, remote sensing, and numerical modelling. However, variations in data accuracy and spatial coverage continue to pose challenges for the practical application of these techniques.

    Conclusions and Prospects

    In the future, this field will enter a fourth stage characterized by big data. At this stage, it is essential to integrate diverse technological approaches, with an emphasis on using big data for high-precision monitoring to improve the characterization of dynamic groundwater-lake interactions. Additionally, multidimensional inversion models of element migration should be developed, and enhanced data mining techniques should be applied at the interface to more accurately quantify solute transport flux across the groundwater-lake interface. Finally, fostering interdisciplinary collaboration and establishing a digital ecological framework will be essential to support research on the reciprocal interactions between groundwater and lake ecosystems, promoting sustainable development and environmental protection.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    LEWANDOWSKI J, MEINIKMANN K, KRAUSE S. Groundwater-surface water interactions: Recent advances and interdisciplinary challenges[J]. Water, 2020, 12(1): 296. doi: 10.3390/w12010296
    [2]
    WINTER T C, HARVEY J W, FRANKE O L, et al. Ground water and surface water: A single resource[R]. Reston: US Geologocal Survey, 1998.
    [3]
    SCIBEK J, ALLEN D M, CANNON A J, et al. Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model[J]. Journal of Hydrology, 2007, 333(2): 165-181.
    [4]
    STEFANIA G A, ROTIROTI M, FUMAGALLI L, et al. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): The effect of groundwater abstraction on surface-water resources[J]. Hydrogeology Journal, 2018, 26: 147-162. doi: 10.1007/s10040-017-1633-x
    [5]
    XU S, FREY S K, ERLER A R, et al. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model[J]. Journal of Hydrology, 2021, 594: 125911. doi: 10.1016/j.jhydrol.2020.125911
    [6]
    BLÖSCHL G, ARDOIN-BARDIN S, BONELL M, et al. At what scales do climate variability and land cover change impact on flooding and low flows?[J]. Hydrological Processes, 2007, 21(9): 1241-1247. doi: 10.1002/hyp.6669
    [7]
    马文静, 王文科, 侯昕悦, 等. 玛纳斯河流域河流-地下水转化驱动下的水文地球化学空间演化[J/OL]. 地质科技通报: 1-12[2024-11-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20240360.

    MA W J, WANG W K, HOU X Y, et al. Spatial evolution of hydrogeochemistry driven by river-groundwater transformations in the Manas River basin[J/OL]. Bulletin of Geological Science and Technology: 1-12[2024-11-04]. https://doi.org/10.19509/j.cnki.dzkq.tb20240360. (in Chinese with English abstract)
    [8]
    WOOLWAY R I, KRAEMER B M, LENTERS J D, et al. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 2020, 1: 388-403.
    [9]
    张运林, 秦伯强, 朱广伟, 等. 论湖泊重要性及我国湖泊面临的主要生态环境问题[J]. 科学通报, 2022, 67(30): 3503-3519.

    ZHANG Y L, QIN B Q, ZHU G W, et al. Importance and main ecological and environmental problems of lakes in China[J]. Chinese Science Bulletin, 2022, 67(30): 3503-3519. (in Chinese with English abstract)
    [10]
    KUNDZEWICZ Z W, SU B D, WANG Y J, et al. Flood risk and its reduction in China[J]. Advances in Water Resources, 2019, 130: 37-45. doi: 10.1016/j.advwatres.2019.05.020
    [11]
    WU J H, XUE C Y, TIAN R, et al. Lake water quality assessment: A case study of Shahu Lake in the semiarid loess area of Northwest China[J]. Environmental Earth Sciences, 2017, 76(5): 232. doi: 10.1007/s12665-017-6516-x
    [12]
    VINÇON-LEITE B, CASENAVE C. Modelling eutrophication in lake ecosystems: A review[J]. Science of the Total Environment, 2019, 651: 2985-3001. doi: 10.1016/j.scitotenv.2018.09.320
    [13]
    ROSENBERRY D O, LEWANDOWSKI J, MEINIKMANN K, et al. Groundwater: The disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921. doi: 10.1002/hyp.10403
    [14]
    朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017, 37(8): 3002-3010. doi: 10.3969/j.issn.1000-6923.2017.08.024

    ZHU J F, LIU Y Y, ZHANG S A, et al. Review on the research of surface water and groundwater interactions[J]. China Environmental Science, 2017, 37(8): 3002-3010. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2017.08.024
    [15]
    NTONA M M, BUSICO G, MASTROCICCO M, et al. Modeling groundwater and surface water interaction: An overview of current status and future challenges[J]. Science of the Total Environment, 2022, 846: 157355. doi: 10.1016/j.scitotenv.2022.157355
    [16]
    BARTHEL R, BANZHAF S. Groundwater and surface water interaction at the regional-scale: A review with focus on regional integrated models[J]. Water Resources Management, 2016, 30(1): 1-32. doi: 10.1007/s11269-015-1163-z
    [17]
    LEWANDOWSKI J, MEINIKMANN K, NVTZMANN G, et al. Groundwater: The disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955. doi: 10.1002/hyp.10384
    [18]
    ROSENBERRY D, LABAUGH J. Field techniques for estimating water fluxes between surface water and ground water[R]. Reston: US Geological Survey, 2014.
    [19]
    LIU B, LI Y L, JIANG W Y, et al. Understanding groundwater behaviors and exchange dynamics in a linked catchment-floodplain-lake system[J]. Science of the Total Environment, 2022, 853: 158558. doi: 10.1016/j.scitotenv.2022.158558
    [20]
    SONG Y Y, ZHANG Q, MELACK J M, et al. Groundwater dynamics of a lake-floodplain system: Role of groundwater flux in lake water storage subject to seasonal inundation[J]. Science of the Total Environment, 2023, 857: 159414. doi: 10.1016/j.scitotenv.2022.159414
    [21]
    WANG Z C, YANG Y, CHEN G, et al. Variation of lake-river-aquifer interactions induced by human activity and climatic condition in Poyang Lake basin, China[J]. Journal of Hydrology, 2021, 595: 126058. doi: 10.1016/j.jhydrol.2021.126058
    [22]
    QIAO S F, MA R, SUN Z Y, et al. The effect of water transfer during non-growing season on the wetland ecosystem via surface and groundwater interactions in arid northwestern China[J]. Remote Sensing, 2020, 12(16): 2516. doi: 10.3390/rs12162516
    [23]
    SUN B, YANG Z Y, ZHAO S N, et al. Water balance analysis of Hulun Lake, a semi-arid UNESCO wetland, using multi-source data[J]. Remote Sensing, 2023, 15(8): 2028. doi: 10.3390/rs15082028
    [24]
    CAO L, NIE Z L, SHEN J M, et al. Stable isotopes reveal the lake shrinkage and groundwater recharge to lakes in the Badain Jaran Desert, NW China[J]. Journal of Hydrology, 2022, 612: 128289. doi: 10.1016/j.jhydrol.2022.128289
    [25]
    CHEN J S, SUN X X, GU W Z, et al. Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert, Northern China[J]. Geochemistry International, 2012, 50(5): 455-465. doi: 10.1134/S0016702912030044
    [26]
    DONG Z B, QIAN G Q, LV P, et al. Investigation of the sand sea with the tallest dunes on Earth: China's Badain Jaran Sand Sea[J]. Earth-Science Reviews, 2013, 120: 20-39. doi: 10.1016/j.earscirev.2013.02.003
    [27]
    王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相互作用[J]. 地学前缘, 2014, 21(4): 91-99.

    WANG X S, HU X N, JIN X M, et al. Interactions between groundwater and lakes in Badain Jaran Desert[J]. Earth Science Frontiers, 2014, 21(4): 91-99. (in Chinese with English abstract)
    [28]
    常启昕, 杨泽森, 李凡, 等. 基于文献计量的寒区流域地下水研究态势分析[J]. 冰川冻土, 2024, 46(1): 298-311.

    CHANG Q X, YANG Z S, LI F, et al. Research status and development trends of groundwater in cold regions: A bibliometric review[J]. Journal of Glaciology and Geocryology, 2024, 46(1): 298-311. (in Chinese with English abstract)
    [29]
    SUN X L, DU Y, DENG Y M, et al. Contrasting nutrients input along with groundwater discharge to East Dongting Lake, central China: A geological perspective[J]. Ecological Indicators, 2022, 145: 109658. doi: 10.1016/j.ecolind.2022.109658
    [30]
    GAN Y Q, SUN X L, WU J, et al. Spatio-temporal variations of lacustrine groundwater discharge and related nutrient fluxes in a typical lake in front of hillocks[J]. Journal of Hydrology, 2024, 635: 131166. doi: 10.1016/j.jhydrol.2024.131166
    [31]
    SUN P B, DU Y, SUN X L, et al. Spatial variability of lacustrine groundwater discharge in the largest urban lake in Asia: Coupled influence from land use and hydrogeology[J]. Hydrological Processes, 2023, 37(7): e14942. doi: 10.1002/hyp.14942
    [32]
    MEINIKMANN K, HUPFER M, LEWANDOWSKI J. Phosphorus in groundwater discharge: A potential source for lake eutrophication[J]. Journal of Hydrology, 2015, 524: 214-226. doi: 10.1016/j.jhydrol.2015.02.031
    [33]
    KAZMIERCZAK J, POSTMA D, MVLLER S, et al. Groundwater-controlled phosphorus release and transport from sandy aquifer into lake[J]. Limnology and Oceanography, 2020, 65(9): 2188-2204. doi: 10.1002/lno.11447
    [34]
    ZHU C, SCHWARTZ F W. Hydrogeochemical processes and controls on water quality and water management[J]. Elements, 2011, 7(3): 169-174. doi: 10.2113/gselements.7.3.169
    [35]
    HAYASHI M, ROSENBERRY D O. Effects of ground water exchange on the hydrology and ecology of surface water[J]. Ground Water, 2002, 40(3): 309-316. doi: 10.1111/j.1745-6584.2002.tb02659.x
    [36]
    吴婧, 甘义群, 杜尧, 等. 长湖地下水排泄及其携带营养盐通量的季节性变化[J]. 地质科技通报, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205

    WU J, GAN Y Q, DU Y, et al. Seasonal variations of groundwater discharge and associated nutrient fluxes in Changhu Lake[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 206-215. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230205
    [37]
    SHAW R D, SHAW J F H, FRICKER H, et al. An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta[J]. Limnology and Oceanography, 1990, 35(4): 870-886. doi: 10.4319/lo.1990.35.4.0870
    [38]
    SCHUSTER P F, REDDY M M, LABAUGH J W, et al. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in north central Minnesota[J]. Hydrological Processes, 2003, 17(4): 823-838. doi: 10.1002/hyp.1211
    [39]
    NARANJO R C, NISWONGER R G, SMITH D, et al. Linkages between hydrology and seasonal variations of nutrients and periphyton in a large oligotrophic subalpine lake[J]. Journal of Hydrology, 2019, 568: 877-890. doi: 10.1016/j.jhydrol.2018.11.033
    [40]
    RAKHIMBEKOVA S, O'CARROLL D M, OLDFIELD L E, et al. Spatiotemporal controls on septic system derived nutrients in a nearshore aquifer and their discharge to a large lake[J]. Science of the Total Environment, 2021, 752: 141262. doi: 10.1016/j.scitotenv.2020.141262
    [41]
    KAZMIERCZAK J, NILSSON B, POSTMA D, et al. Transport of geogenic phosphorus to a groundwater-dominated eutrophic lake[J]. Journal of Hydrology, 2021, 598: 126175. doi: 10.1016/j.jhydrol.2021.126175
    [42]
    NAKAYAMA T, WATANABE M. Missing role of groundwater in water and nutrient cycles in the shallow eutrophic Lake Kasumigaura, Japan[J]. Hydrological Processes, 2008, 22(8): 1150-1172. doi: 10.1002/hyp.6684
    [43]
    YE S S, GAO L, ZAMYADI A, et al. Multi-proxy approaches to investigate cyanobacteria invasion from a eutrophic lake into the circumjacent groundwater[J]. Water Research, 2021, 204: 117578. doi: 10.1016/j.watres.2021.117578
    [44]
    YANG Z, KONG F X, ZHANG M. Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu, China[J]. Environmental Monitoring and Assessment, 2016, 188(5): 280. doi: 10.1007/s10661-016-5289-0
    [45]
    VAHEDDOOST B, AKSOY H, ABGHARI H, et al. Decision tree for measuring the interaction of hyper-saline lake and coastal aquifer in lake urmia[C]//Anon. Watershed Management 2015. Reston, VA: American Society of Civil Engineers, 2015: 62-71.
    [46]
    FARUQUE ABESH B, LIU G M, LIU G, VÁZQUEZ-ORTEGA A, et al. Cyanotoxin transport from surface water to groundwater: Simulation scenarios for Lake Erie[J]. Journal of Great Lakes Research, 2022, 48(3): 695-706. doi: 10.1016/j.jglr.2022.02.009
    [47]
    KARAN S, KIDMOSE J, ENGESGAARD P, et al. Role of a groundwater-lake interface in controlling seepage of water and nitrate[J]. Journal of Hydrology, 2014, 517: 791-802. doi: 10.1016/j.jhydrol.2014.06.011
    [48]
    王焰新, 杜尧, 邓娅敏, 等. 湖底地下水排泄与湖泊水质演化[J]. 地质科技通报, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001

    WANG Y X, DU Y, DENG Y M, et al. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0001
    [49]
    武显仓. 东洞庭湖地下水-湖水交互带中铁-磷相互作用机制[D]. 武汉: 中国地质大学(武汉), 2022.

    WU X C. Iron-phosphorus interaction mechanisms in groundwater-lake water interaction zone of East Dongting Lake[D]. Wuhan: China university of geosciences(Wuhan), 2022. (in Chinese with English abstract)
    [50]
    STOLIKER D L, REPERT D A, SMITH R L, et al. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake[J]. Environmental Science & Technology, 2016, 50(7): 3649-3657.
    [51]
    GÓMEZ-GENER L, SIEBERS A R, ARCE M I, et al. Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams[J]. Earth-Science Reviews, 2021, 220: 103724.
    [52]
    SAFAIE A, LITCHMAN E, PHANIKUMAR M S. Decreasing groundwater supply can exacerbate lake warming and trigger algal blooms[J]. Journal of Geophysical Research Biogeosciences, 2021, 126(9): e2021JG006455.
    [53]
    UMAÑA G. Ten years of limnological monitoring of a modified natural lake in the tropics: Cote Lake, Costa Rica[J]. Revista De Biologia Tropical, 2014, 62(2): 567-578.
    [54]
    ZHANG Y L, WU Z X, LIU M L, et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China)[J]. Water Research, 2015, 75: 249-258.
    [55]
    WEILHARTNER A, MUELLEGGER C, KAINZ M, et al. Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater[J]. Science of the Total Environment, 2012, 420: 222-228.
    [56]
    KIDMOSE J, NILSSON B, ENGESGAARD P, et al. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): Implications for lake ecological state and restoration[J]. Hydrogeology Journal, 2013, 21(8): 1787-1802.
    [57]
    王国祥, 濮培民. 若干人工调控措施对富营养化湖泊藻类种群的影响[J]. 环境科学, 1999, 20(2): 71-74.

    WANG G X, PU P M. Influence of some artificial controls on eutrophic algal population dynamics[J]. Environmental Science, 1999, 20(2): 71-74. (in Chinese with English abstract)
    [58]
    KALBUS E, REINSTORF F, SCHIRMER M. Measuring methods for groundwater-surface water interactions: A review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
    [59]
    SALEEM M, JEELANI G. Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water-groundwater interaction in Dal Lake, Kashmir Valley[J]. Environmental Earth Sciences, 2017, 76(15): 533.
    [60]
    SHAW G D, MITCHELL K L, GAMMONS C H. Estimating groundwater inflow and leakage outflow for an intermontane lake with a structurally complex geology: Georgetown Lake in Montana, USA[J]. Hydrogeology Journal, 2017, 25(1): 135-149.
    [61]
    YAPIYEV V, ROSSI P M, ALA-AHO P, et al. Stable water isotopes as an indicator of surface water intrusion in shallow aquifer wells: A cold climate perspective[J]. Water Resources Research, 2023, 59(2): e2022WR033056.
    [62]
    ADYASARI D, DIMOVA N T, DULAI H, et al. Radon-222 as a groundwater discharge tracer to surface waters[J]. Earth-Science Reviews, 2023, 238: 104321.
    [63]
    LIAO F, WANG G C, YI L X, et al. Applying radium isotopes to estimate groundwater discharge into Poyang Lake, the largest freshwater lake in China[J]. Journal of Hydrology, 2020, 585: 124782.
    [64]
    常启昕. 高寒山区河道径流水分来源及其季节变化规律: 以黑河上游葫芦沟流域为例[D]. 武汉: 中国地质大学(武汉), 2019.

    CHANG Q X. Water sources of stream runoff in alpine region and their seasonal variations: A case study of Hulugou catchment in the headwaters of the Heihe River[D]. Wuhan: China University of Geosciences(Wuhan), 2019. (in Chinese with English abstract)
    [65]
    范红晨, 孙晓梁, 杜尧, 等. 不同地下水端元选取对222Rn质量平衡模型量化湖底地下水排泄的影响[J]. 安全与环境工程, 2021, 28(3): 71-77.

    FAN H C, SUN X L, DU Y, et al. Influence of different groundwater end-members on 222Rn mass balance model used to quantify the lacustrine groundwater discharge[J]. Safety and Environmental Engineering, 2021, 28(3): 71-77. (in Chinese with English abstract)
    [66]
    GENEREUX D P, HOOPER R P. Chapter 10: Oxygen and hydrogen isotopes in rainfall-runoff studies[M]. Amsterdam: Elsevier, 1998: 319-346.
    [67]
    SEBOK E, DUQUE C, KAZMIERCZAK J, et al. High-resolution distributed temperature sensing to detect seasonal groundwater discharge into Lake Væng, Denmark[J]. Water Resources Research, 2013, 49(9): 5355-5368.
    [68]
    张淑勋, 孙自永, 潘艳喜, 等. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例[J]. 地质科技通报, 2023, 42(4): 95-106. doi: 10.19509/j.cnki.dzkq.tb20220054

    ZHANG S X, SUN Z Y, PAN Y X, et al. Using temperature to trace river-groundwater interactions in alpine regions: A case study in the upper reaches of the Heihe River[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 95-106. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220054
    [69]
    MCLACHLAN P J, CHAMBERS J E, UHLEMANN S S, et al. Geophysical characterisation of the groundwater-surface water interface[J]. Advances in Water Resources, 2017, 109: 302-319.
    [70]
    BANERJEE D, GANGULY S. A review on the research advances in groundwater-surface water interaction with an overview of the phenomenon[J]. Water, 2023, 15(8): 1552.
    [71]
    VASILEVSKIY P, WANG P, POZDNIAKOV S, et al. Simulating river/lake-groundwater exchanges in arid river basins: An improvement constrained by lake surface area dynamics and evapotranspiration[J]. Remote Sensing, 2022, 14(7): 1657.
    [72]
    AMANI M, SALEHI B, MAHDAVI S, et al. Wetland classification using multi-source and multi-temporal optical remote sensing data in Newfoundland and Labrador, Canada[J]. Canadian Journal of Remote Sensing, 2017, 43(4): 360-373.
    [73]
    ALA-AHO P, ROSSI P M, ISOKANGAS E, et al. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging[J]. Journal of Hydrology, 2015, 522: 391-406.
    [74]
    TWEED S, LEBLANC M, CARTWRIGHT I. Groundwater-surface water interaction and the impact of a multi-year drought on lakes conditions in South-East Australia[J]. Journal of Hydrology, 2009, 379(1/2): 41-53.
    [75]
    SOLANA M X, QUIROZ LONDOÑO O M, ROMANELLI A, et al. Connectivity of temperate shallow lakes to groundwater in the Pampean Plain, Argentina: A remote sensing and multi-tracer approach[J]. Groundwater for Sustainable Development, 2021, 13: 100556.
    [76]
    LIAO F, WANG G C, YANG N, et al. Groundwater discharge tracing for a large Ice-Covered Lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes (D, 18O, and 222Rn)[J]. Journal of Hydrology, 2022, 609: 127741.
    [77]
    WILSON J, ROCHA C. A combined remote sensing and multi-tracer approach for localising and assessing groundwater-lake interactions[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 44: 195-204.
    [78]
    WILSON J, COXON C, ROCHA C. A GIS and remote sensing based screening tool for assessing the potential for groundwater discharge to lakes in Ireland[J]. Biology and Environment: Proceedings of the Royal Irish Academy, 2016, 116B(3): 265-277.
    [79]
    ABDELMOHSEN K, SULTAN M, SAVE H, et al. What can the GRACE seasonal cycle tell us about lake-aquifer interactions?[J]. Earth-Science Reviews, 2020, 211: 103392.
    [80]
    MERRITT M L, KONIKOW L F. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model[R]. Reston: US Geological Survey, 2000.
    [81]
    LU C Y, ZHANG B, HE X, et al. Simulation of lake-groundwater interaction under steady-state flow[J]. Groundwater, 2021, 59(1): 90-99.
    [82]
    BAILEY R, RATHJENS H, BIEGER K, et al. SWATMOD-prep: Graphical user interface for preparing coupled SWAT-MODFLOW simulations[J]. Journal of the American Water Resources Association, 2017, 53(2): 400-410.
    [83]
    RAFIEI V, NEJADHASHEMI A P, MUSHTAQ S, et al. Groundwater-surface water interactions at wetland interface: Advancement in catchment system modeling[J]. Environmental Modelling & Software, 2022, 152: 105407.
    [84]
    TRAN Q D, NI C F, LEE I H, et al. Numerical modeling of surface water and groundwater interactions induced by complex fluvial landforms and human activities in the Pingtung Plain groundwater basin, Taiwan[J]. Applied Sciences, 2020, 10(20): 7152.
    [85]
    SMERDON B D, MENDOZA C A, DEVITO K J. Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model[J]. Water Resources Research, 2007, 43(1): 72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(150) PDF Downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return